Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Controlled Electropositive Catalytic Sites on Zeolites for Achieving High

CH₃Cl Selectivity via Electrophilic CH₄ Chlorination using Cl₂

Yuyeol Choi^a[‡], Sunghyun Park^a[‡], Seungdon Kwon^a, Kyoung Chul Ko^{b,*}, and Kyungsu Na^{a,*}

^aDepartment of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

^bDepartment of Chemistry Education, Chonnam National University, Gwangju 61186, Republic of

Korea

‡These authors contributed equally.

*Corresponding author. Tel: +82-62-530-3494, E-mail: kyungsu_na@chonnam.ac.kr

Tel: +82-62-530-2491, E-mail: kcko1982@chonnam.ac.kr

Reactant	Reaction	ΔG_{f}° (kJ mol ⁻¹)	Reference
Cl ₂	$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$	-115.7	[1]
	$CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$	-105	
	$CH_2Cl_2 + Cl_2 \rightarrow CHCl_3 + HCl$	-87.8	
	$CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$	-62.5	
HCl	$CH_4 + HCl \rightarrow CH_3Cl + H_2$	83.5	
	$CH_3Cl + HCl \rightarrow CH_2Cl_2 + H_2$	94.2	
	$CH_2Cl_2 + HCl \rightarrow CHCl_3 + H_2$	111.4	
	$CHCl_3 + HCl \rightarrow CCl_4 + H_2$	136.7	

Table S1. Standard Gibbs energies (ΔG_f°) of possible chlorination reactions depending on the Cl source

Fig. S1. Y zeolite models for p-DOS calculations. (a) Unit cell of the Y zeolite structure (b) He atom located in the middle of the Y zeolite pore to avoid additional interactions (c–h) Y zeolite pore interacting with metal cations bound to Site II (He, white; O, red; Si, ivory; Al, gray; transition metal atoms, blue).

Fig. S2. Calculated atom-projected partial density of states for (a) CrHY, (b) MnHY, (c) FeHY, (d) CoHY, (e) NiHY, and (f) ZnHY. For comparison, the He 1s orbital energy level is set as a reference at -15.77 eV. The blue dashed line indicates the LUMO energy level of each Y zeolite model.

Fig. S3. CH₄ adsorption models in (a) CrHY, (b) MnHY, (c) FeHY, (d) CoHY, (e) NiHY, and (f) ZnHY used to calculate the theoretical CH₄ adsorption energy (H, white; C, black; O, red; Si, ivory; Al, gray; and transition metal atoms, blue).

Fig. S4. Cl₂ adsorption models in (a) CrHY, (b) MnHY, (c) FeHY, (d) CoHY, (e) NiHY, and (f) ZnHY used to calculate the theoretical Cl₂ adsorption energy (Cl, green; O, red; Si, ivory; Al, gray; and transition metal atoms, blue). The numbers in the vicinity of Cl atoms indicate the charge values affected by Cl₂ polarization on electropositive transition metal cations.

Fig. S5. CH₃Cl adsorption models in (a) CrHY, (b) MnHY, (c) FeHY, (d) CoHY, (e) NiHY, and (f) ZnHY used to calculate the theoretical CH₃Cl adsorption energy (H, white; C, black; Cl, green; O, red; Si, ivory; Al, gray; and transition metal atoms, blue).

Fig. S6. Correlation between calculated LUMO and adjusted LUMO energy levels using an He atom

Fig. S7. Reaction profiles showing CH₄ conversion (${}^{X_{CH_4}}$, red circles), Cl₂ conversion (${}^{X_{Cl_2}}$, green circles), CH₃Cl selectivity (${}^{S_{CH_3Cl}}$, blue triangles), and conversion ratio of Cl₂/CH₄ (${}^{X_{Cl_2}/X_{CH_4}}$, black rhombus) as a function of time-on-stream (min).

Fig. S8. XRD diffraction patterns of HY zeolites partially exchanged with Zn^{2+} , Ni^{2+} , Co^{2+} , Fe^{3+} , Mn^{2+} , and Cr^{3+} ions before and after the reaction, in comparison with those of pristine HY.

References

 D. W. Oxtoby, H. P. Gillis, A. Campion, Principle of Modern Chemistry, 7th ed., Cengage learning, 2014.