Boosting Electrocatalytic Water Oxidation of NiFe Layered Double Hydroxide *via* the Synergy of 3d-4f Electron Interaction and Citrate Intercalation

Shuo Chen,^a Zhicheng Zheng,^a Qing ying Li,^a Hao Wan,^{b,*} Gen Chen,^a Ning Zhang,^a Xiaohe Liu,^{a,b,*} Renzhi Ma^{c,*}

^a School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: liuxh@csu.edu.cn

^b Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China. E-mail: wanhao@zzu.edu.cn

^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. E-mail: Ma.Renzhi@nims.go.jp

Figure S1. (a-b) SEM images and (c) EDX result of Ni₂Fe₁ PNs.

Figure S2. (a-b) SEM images and (c) EDX result of Ni₂Fe_{0.9}Ce_{0.1} PNs.

Figure S3. (a-b) SEM images and (c) EDX result of Ni₂Fe_{0.8}Ce_{0.2} PNs.

Figure S4. (a-b) SEM images and (c) EDX result of Ni₂Fe_{0.7}Ce_{0.3} PNs.

Figure S5. (a-b) SEM images and (c) EDX result of Ni₂Fe_{0.6}Ce_{0.4} PNs.

Figure S6. (a-b) SEM image and (c) EDX result of $Ni_2Fe_{0.5}Ce_{0.5}$ PNs.

Figure S7. (a-b) SEM images and (c) EDX result of Ni₂Fe₁ Ns.

Figure S8. (a-b) SEM images of Ni₂Fe₁ LDH product prepared without citrate addictive.

Figure S9. N₂ sorption/desorption isotherms of (a) Ni_2Fe_1 Ns, (b) $Ni_2Fe_{0.7}Ce_{0.3}$ PNs and (c) Ni_2Fe_1 PNs.

Figure S10. Magnified XRD pattern for (012) peak.

Figure S11. XRD patterns of Ni₂Fe₁Ns.

Figure S12. Overall XPS surveys of (a) $Ni_2Fe_{0.7}Ce_{0.3}$ PNs and (b) Ni_2Fe_1 PNs.

Figure S13. Overpotential at different current density.

Figure S14. OER activity of carbon paper.

Figure S15. LSV curves of catalysts with different citrate additive amounts.

Figure S16. LSV curves of $Ni_2Fe_{0.7}Ce_{0.3}$ PNs without iR-correction before and after Chronopotentiometric test.

Figure S17. XRD pattern of Ni₂Fe_{0.7}Ce_{0.3} PNs after chronopotentiometric test.

Figure S18. (a) SEM images and (b) EDX result after chronopotentiometric test.

Figure S19. XPS spectra after the chronopotentiometric test. (a) Ni 2p, (b) Fe 2p and (c) Ce 3d.

Figure S20. The FT-IR spectrum of Ni₂Fe_{0.7}Ce_{0.3} PNs after the chronopotentiometric test.

Figure S21. LSV curves normalized by BET surface areas.

Table S1. B	Sinding energy	gies and corres	ponding fittir	ng relative area	s in XPS spectra
	0 0		0	0	1

Orbits	Ni ₂ Fe _{0.7} Ce _{0.3} PNs	Ni ₂ Fe ₁ PNs
$Fe^{3+} 2p_{3/2}$	711.43 eV /311657.4	712.50 eV/ 338187.2
$Fe^{3+} 2p_{1/2}$	724.09 eV/ 155828.7	724.91 eV/ 169093.6
$Ni^{2+} 2p_{3/2}$	856.07 eV/ 214567.7	855.69 eV/ 237217.3
$Ni^{3+} 2p_{1/2}$	857.63 eV/ 96498.85	857.21 eV/ 83106.64
$Ce^{3+} 3d_{3/2}$	904.33 eV/ 57828.39	/
$Ce^{4+} 3d_{3/2}$	910.83 eV/ 70843.83	/

	20mA cm ⁻²	50mA cm ⁻²	100mA cm ⁻²
Ni ₂ Fe ₁ PNs	250	306	377
$Ni_2Fe_{0.9}Ce_{0.1}$	233	284	343
$Ni_2Fe_{0.8}Ce_{0.2}$	235	274	322
$Ni_2Fe_{0.7}Ce_{0.3}$	224	253	293
Ni ₂ Fe _{0.6} Ce _{0.4}	261	312	371
$Ni_2Fe_{0.5}Ce_{0.5}$	263	315	378
Ni ₂ Fe ₁ Ns	352	419	534
RuO ₂	381		

Table S2. Overpotential delivering different current densities

Table S3. The values of parameters in the fitting circuit

	Ni ₂ Fe _{0.5} Ce _{0.5}	Ni ₂ Fe _{0.6} Ce _{0.4}	Ni ₂ Fe _{0.7} Ce _{0.3}	Ni ₂ Fe _{0.8} Ce _{0.2}	Ni ₂ Fe _{0.5} Ce _{0.5}	Ni ₂ Fe ₁ PNs	Ni ₂ Fe ₁ Ns
	PNs	PNs	PNs	PNs	PNs		
Rs (Ω)	3.161	2.941	2.915	2.877	2.863	2.783	2.821
CPE-1-T	0.0049445	0.011861	0.01443	0.015921	0.0065464	0.00025401	0.0020007
CPE-1-P	0.60365	0.54977	0.76804	0.81399	0.67977	0.87632	0.71344
$R_{ct1}(\Omega)$	1.096	1.187	0.28386	0.24508	0.52489	0.64906	2.167
CPE-2-T	0.054842	0.041936	0.070164	0.06374	0.064373	0.051382	0.0078659
CPE-2-T	0.7567	0.78909	0.86533	0.85811	0.79748	0.65801	0.7131
$R_{ct2}\left(\Omega\right)$	9.384	7.162	4.232	4.563	4.379	5.229	20.98

Catalysts	Overpotential at 20 mA cm ⁻²	Supporter	Loading Capacity (mg cm-1)	References
Ni ₂ Fe _{0.7} Ce _{0.3} PNs	224	СР	0.4	This work
NiFeS@Ti ₃ C ₂ MXene/NF	290	NF	1.25	1
CoO@NiFe LDH/NF	225	NF	0.78	2
Co _{1.98} -NiFe LDH	236	СР	1	3
Fe ₂ P-NiCoP	239	NF		4
NiFe LDH-Ci/CC	240	CC	0.67	5
Ni–Fe LDH DSNCs	246	СР	0.22	6
NiFeW- LDH@CP	248	СР	0.8	7
NiFe ₂ O ₄ @N/rGO	252	NF	1	8
NiFe-Pi/P	255	NF	2	9
$\begin{array}{c} (\mathrm{Ni}_{0.5}\mathrm{Fe}_{0.5})\mathrm{C}_{2}\mathrm{O}_{4}\\ \mathrm{nanorods} \end{array}$	266	NF		10
NiFe PBAs	267	rotating disk electrode (RDE)	0.15	11
CNT@NiFe-LDH NS	270	NF	0.5	12
MoNiFe-LDH	317	glass carbon		13

Table S4. OER activity of recently reported NiFe-based catalysts

CP, CC, NF refer to carben paper, carbon cloth and nickel foam respectively.

References

- 1. D. Chanda, K. Kannan, J. Gautam, M. M. Meshesha, S. G. Jang, V. A. Dinh and B. L. Yang, *Appl. Catal., B*, 2023, **321**.
- 2. Z. Wang, J. Zhang, Q. Yu, H. Yang, X. Chen, X. Yuan, K. Huang and X. Xiong, *Chem. Eng. J.*, 2021, **410**.
- 3. Y. Yang, S. Wei, Y. Li, D. Guo, H. Liu and L. Liu, *Appl. Catal.*, *B*, 2022, **314**.
- 4. M. Xiao, C. Zhang, P. Wang, W. Zeng, J. Zhu, Y. Li, W. Peng, Q. Liu, H. Xu, Y. Zhao, H. Li, L. Chen, J. Yu and S. Mu, *Materials Today Physics*, 2022, **24**.
- 5. Z. Wang, J. Zhang, Q. Wang, X. Jiang, K. Huang and X. Xiong, *Journal of Materials Science*, 2021, **56**, 8115-8126.
- 6. J. Zhang, L. Yu, Y. Chen, X. F. Lu, S. Gao and X. W. D. Lou, *Adv Mater*, 2020, **32**, e1906432.
- 7. P.-F. Guo, Y. Yang, W.-J. Wang, B. Zhu, W.-T. Wang, Z.-Y. Wang, J.-L. Wang, K. Wang, Z.-H. He and Z.-T. Liu, *Chem. Eng. J.*, 2021, **426**.

- 8. L. Cao, Z. Li, K. Su, M. Zhang and B. Cheng, *Journal of Energy Chemistry*, 2021, **54**, 595-603.
- 9. W. Li, M. Chen, Y. Lu, P. Qi, G. Liu, Y. Zhao, H. Wu and Y. Tang, *Applied Surface Science*, 2022, **598**.
- 10. H. Hu, X. Lei, S. Li, R. Peng and J. Wang, New Journal of Chemistry, 2022, 46, 328-333.
- 11. M. Jiang, X. Fan, S. Cao, Z. Wang, Z. Yang and W. Zhang, *Journal of Materials Chemistry A*, 2021, **9**, 12734-12745.
- 12. H. Chen, P. Zhang, R. Xie, Y. Xiong, C. Jia, Y. Fu, P. Song, L. Chen, Y. Zhang and T. Liao, *Advanced Materials Interfaces*, 2021, **8**.
- 13. Z. Yin, X. Liu, M. Cui, Z. Cao, A. Liu, L. Gao, T. Ma, S. Chen and Y. Li, *Materials Today Sustainability*, 2022, **17**.