Ultrathin ZIS Nanosheets Encapsulated in Metal-Organic-Framework-Derived CNCo-Fe₃O₄ as Efficient Functional Photocatalyst for Hydrogen Evolution

Huihua Luo¹, Lianqing Yu^{*1}, Kehui Xue¹, Haifeng Zhu², Yaping Zhang²

(1. School of materials science and engineering, China University of Petroleum, QingDao 266580

China.

2. College of Science, China University of Petroleum, QingDao 266580 China.)

* Lianqing Yu Email: iyy2000@163.com

Fig. S1 EDS profiles and atomic ratio of elements in 5% $CNCo-Fe_3O_4/ZIS$ heterojunction catalyst (a-b), $CNCo-Fe_3O_4$ heterojunction catalyst, respectively (c-d).

Fig. S2 XRD pattern of simulated-Fe₃O₄, 1h-CNCo-Fe₃O₄ and 2h-CNCo-Fe₃O₄ catalyst (a); CoFe-MIL (b); 3% CNCo-Fe₃O₄/ZIS, 10% CNCo-Fe₃O₄/ZIS and 25% CNCo-Fe₃O₄/ZIS heterojunction catalyst (c).

Fig. S3 FTIR of 3% CNCo-Fe₃O₄-ZIS, 10% CNCo-Fe₃O₄-ZIS and 25% CNCo-Fe₃O₄-ZIS heterojunction catalyst.

Fig. S4 UV-vis DRS spectra of 2h-CNCo-Fe₃O₄ and 2h-CN-Fe₃O₄ samples.

Fig. S5 The tauc plots of $(\alpha hv)^2$ vs photon energy of 3% CNCo-Fe₃O₄/ZIS, 5% CNCo-Fe₃O₄/ZIS, 10% CNCo-Fe₃O₄/ZIS and 25% CNCo-Fe₃O₄/ZIS heterojunction catalyst.

Fig. S6 (a) I-t and (b) EIS of 2h-CNCo-Fe₃O₄ and 2h-CN-Fe₃O₄ samples.

Fig. S7 PL spectra of 2h-CNCo-Fe $_3O_4$ and 2h-CN-Fe $_3O_4$ samples.