## **Electronic Supplementary Information**

## Enhancing electrochemical performance by triggering a local structure distortion in lithium vanadium phosphate cathode for lithium-ion batteries

Hyunyoung Park<sup>a,†</sup>, Wontae Lee<sup>a,†</sup>, Ranjth Thangavel<sup>a,d</sup>, Woong Oh<sup>a</sup>, Bong-Soo Jin<sup>b</sup>, Won-Sub Yoon<sup>a,c,\*</sup>

a Department of Energy Science, Sungkyunkwan University, 300 Suwon-si, Gyeonggi-do 440-746, Republic of Korea

b Battery Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea

c SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea.

<sup>d</sup>Current affiliation: School of Energy Science and Engineering, Indian Institute of Technology Guwahati,

Guwahati 781039, India

\*Corresponding author: <u>wsyoon@skku.edu</u>

† These authors contributed to this work equally



Figure S1. Energy-dispersive X-ray (EDX) mapping analysis of LVP-T particles from HRTEM



Figure S2. Observed and calculated pattern of (a) pristine LVP-P (reproduced from ref. 44 with permission from The Royal Society of Chemistry) and (b) pristine LVP-T of high-resolution powder diffraction



**Figure S3**. Crystal structures of (a) LVP-P, (b) LVP-T, and (c) overlapped crystal structures of both materials from Rietveld refinement of high-resolution powder diffraction.



**Figure S4**. Each bond lengths around each three Li-ion site; (a) Li3 site, (b) Li2 site and (c) Li1 site in LVP-P and (d) Li3 site, (e) Li2 site, and (f) Li1 site in LVP-T in the crystal structures from Rietveld refinement of high-resolution powder diffraction.



**Figure S5**. Nonlinear least-squares fitting on the EXAFS spectra of pristine LVP-P in (a) R-space and (b) k-space and pristine LVP-T in (c) R-space and (d) k-space. Both spectra are fitted simultaneously to obtain structural parameters listed in Table S5.



**Figure S6**. (a) Normalized XANES spectra and (b) magnified figure of XANES spectra at Ti K-edge at pristine LVP-T with references of Ti foil,  $TiO_2$  (rutile), and  $TiO_2$ (anatase). (c) k<sup>3</sup>-weighted Fourier transformed EXAFS spectra at Ti K-edge at pristine state of LVP-T.



**Figure S7**. The electrochemical voltage profile of (a) LVP-P and (b) LVP-T during the initial two cycles at 0.1C



**Figure S8**. The equilibrium voltage (black) and operating voltage (red) in GITT test on (a) LVP-P (reproduced from ref. 44 with permission from The Royal Society of Chemistry) and (b) LVP-T during the first cycle and (c) magnified figure of LVP-T during the charge to be needed for calculating diffusion coefficient.



Figure S9. Cyclic voltammetry curves of LVP-P and LVP-T electrodes



Figure S10. EIS spectra of LVP-P and LVP-T electrodes after the 1<sup>st</sup> charge/discharge cycle.



Figure S11. Cyclic stability test of LVP-P and LVP-T electrodes at 0.5C during 100 cycles



**Figure S12**. Change of unit cell volume obtained from in situ XRD patterns of LVP-P (unfilled, reproduced from ref. 44 with permission from The Royal Society of Chemistry) and LVP-T (filled) during (a) the 1<sup>st</sup> charge and (b) the 1<sup>st</sup> discharge



**Figure S13**. Nonlinear least-squares fitting on the EXAFS spectra of full charged LVP-P in R-space and k-space and full charged LVP-T in R-space and k-space. Both spectra are fitted simultaneously to obtain structural parameters listed in Table S6.

**Table S1.** Lattice parameters of LVP-P and LVP-T cathode materials obtained by Rietveld refinement of

 high-resolution powder diffraction

|       | a (Å)    | b (Å)    | c (Å)     | Beta (°)  | Vol. (ų)  |
|-------|----------|----------|-----------|-----------|-----------|
| LVP-P | 8.609(5) | 8.594(5) | 12.039(5) | 90.593(5) | 890.72(1) |
| LVP-T | 8.609(1) | 8.600(1) | 12.041(1) | 90.583(1) | 891.42(1) |

**Table S2**. Atomic position (x, y, z), temperature factors (B), and occupancy of each element obtained from the result of Rietveld refinement of pristine LVP-P and pristine LVP-T

\* : fixed

| For LVP-P, Rp= 5.36, Rwp= 7.11, Rexp= 5.12 and $\chi^2$ = 1.93 |           |           |           |           |           |           |        |        |      |
|----------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------|--------|------|
| For LVP-T, Rp= 8.18, Rwp= 11.5, Rexp= 3.75 and $\chi^2$ = 3.28 |           |           |           |           |           |           |        |        |      |
| Atom                                                           | X         | x (Å)     |           | y (Å)     |           | z (Å)     |        | В      |      |
|                                                                | LVP-P     | LVP-T     | LVP-P     | LVP-T     | LVP-P     | LVP-T     | LVP-P  | LVP-T  | Ucc. |
| Li1                                                            | 0.206(5)  | 0.227(3)  | 0.755(6)  | 0.772(4)  | 0.168(4)  | 0.175(4)  | 1*     | 1*     | 1*   |
| Li2                                                            | 0.955(6)  | 0.904(4)  | 0.303(5)  | 0.287(4)  | 0.216(4)  | 0.228(5)  | 1*     | 1*     | 1*   |
| Li3                                                            | 0.573(6)  | 0.572(2)  | 0.403(5)  | 0.405(2)  | 0.193(4)  | 0.199(6)  | 1*     | 1*     | 1*   |
| V1                                                             | 0.2470(8) | 0.2476(3) | 0.4619(7) | 0.4630(5) | 0.1113(5) | 0.1106(4) | 2.2(1) | 0.8(6) | 1*   |
| V2                                                             | 0.7519(8) | 0.7522(2) | 0.4707(7) | 0.4706(4) | 0.3897(5) | 0.3902(3) | 2.5(1) | 0.9(6) | 1*   |
| P1                                                             | 0.105(1)  | 0.106(1)  | 0.103(1)  | 0.104(2)  | 0.149(7)  | 0.149(8)  | 2.6(2) | 1.8(3) | 1*   |
| P2                                                             | 0.603(1)  | 0.604(1)  | 0.114(1)  | 0.115(4)  | 0.352(8)  | 0.352(3)  | 3.0(2) | 1.1(8) | 1*   |
| Р3                                                             | 0.037(1)  | 0.035(5)  | 0.249(1)  | 0.249(7)  | 0.492(8)  | 0.492(1)  | 2.1(2) | 1.4(5) | 1*   |
| O1                                                             | 0.927(2)  | 0.928(1)  | 0.113(2)  | 0.112(9)  | 0.146(1)  | 0.144(1)  | 1.3(4) | 0.2(3) | 1*   |
| O2                                                             | 0.151(2)  | 0.154(9)  | 0.982(2)  | 0.980(6)  | 0.238(1)  | 0.236(6)  | 3.4(5) | 0.9(5) | 1*   |
| O3                                                             | 0.175(2)  | 0.176(7)  | 0.043(2)  | 0.042(1)  | 0.041(1)  | 0.041(7)  | 3.4(5) | 0.8(3) | 1*   |
| O4                                                             | 0.165(2)  | 0.163(2)  | 0.266(2)  | 0.266(9)  | 0.187(1)  | 0.185(2)  | 2.4(6) | 1.2(3) | 1*   |
| O5                                                             | 0.431(2)  | 0.434(6)  | 0.091(2)  | 0.091(7)  | 0.328(1)  | 0.328(6)  | 1.7(5) | 0.2(8) | 1*   |
| O6                                                             | 0.695(2)  | 0.697(3)  | -0.002(2) | 0.004(7)  | 0.279(1)  | 0.278(2)  | 2.7(6) | 0.2(8) | 1*   |
| 07                                                             | 0.650(2)  | 0.650(8)  | 0.083(2)  | 0.084(6)  | 0.470(1)  | 0.469(6)  | 4.8(6) | 1.3(8) | 1*   |
| O8                                                             | 0.642(2)  | 0.645(1)  | 0.283(2)  | 0.281(1)  | 0.318(1)  | 0.317(6)  | 2.4(5) | 1.3(4) | 1*   |
| O9                                                             | 0.951(2)  | 0.953(4)  | 0.133(2)  | 0.133(8)  | 0.568(1)  | 0.567(7)  | 1.8(4) | 1.1(6) | 1*   |
| O10                                                            | 0.935(2)  | 0.934(6)  | 0.318(2)  | 0.319(5)  | 0.403(1)  | 0.404(1)  | 3.1(6) | 0.2(1) | 1*   |
| O11                                                            | 0.171(2)  | 0.171(1)  | 0.174(2)  | 0.174(5)  | 0.432(1)  | 0.432(9)  | 2.3(5) | 1.3(5) | 1*   |
| O12                                                            | 0.109(2)  | 0.112(3)  | 0.362(2)  | 0.355(3)  | 0.573(1)  | 0.573(5)  | 2.2(5) | 1.4(7) | 1*   |

|     | LVP-P (Å) |           | LVP    | Difference (Å) |       |
|-----|-----------|-----------|--------|----------------|-------|
|     | 02-04     | 2.60 (9)  | 02-04  | 2.58 (8)       | -0.02 |
| Lil | 02-05     | 3.52 (11) | 02-05  | 3.52 (9)       | 0     |
|     | 02-011    | 3.69 (7)  | 02-011 | 3.67 (9)       | -0.02 |
|     | 04-05     | 3.21 (8)  | 04-05  | 3.24 (8)       | 0.03  |
|     | 04-011    | 3.05 (10) | 04-011 | 3.05 (11)      | 0     |
|     | 05-011    | 2.67 (6)  | 05-011 | 2.69 (8)       | 0.02  |
|     | Volume    | 3.14      | Volume | 3.15           | 0.01  |
|     | 01-04     | 2.48 (8)  | 01-04  | 2.46 (5)       | -0.02 |
|     | 01-06     | 3.59 (10) | 01-06  | 3.66 (6)       | 0.07  |
|     | 01-08     | 3.54 (3)  | 01-08  | 3.52 (5)       | -0.02 |
|     | 01-010    | 3.56 (7)  | 01-010 | 3.58 (3)       | 0.02  |
|     | 04-06     | 3.71 (6)  | 04-06  | 3.74 (6)       | 0.03  |
| Li2 | 04-08     | 4.79 (18) | 04-08  | 4.74 (4)       | -0.05 |
|     | O4-O10    | 3.32 (6)  | O4-O10 | 3.32 (5)       | 0     |
|     | 06-08     | 2.60 (3)  | 06-08  | 2.62 (6)       | 0.02  |
|     | O6-O10    | 2.90 (6)  | O6-O10 | 2.92 (5)       | 0.02  |
|     | O8-O10    | 2.73 (5)  | O8-O10 | 2.71 (6)       | -0.02 |
|     | Volume    | 6.95      | Volume | 7.03           | 0.08  |
|     | 01-02     | 2.48 (1)  | 01-02  | 2.50 (5)       | 0.02  |
|     | 01-06     | 2.76 (3)  | 01-06  | 2.72 (4)       | -0.04 |
|     | 01-08     | 2.93(3)   | 01-08  | 2.95 (1)       | 0.02  |
|     | 01-09     | 4.17 (4)  | 01-09  | 4.17 (8)       | 0     |
|     | 02-06     | 3.96 (7)  | 02-06  | 3.97 (3)       | 0.01  |
| Li3 | 02-08     | 3.12 (3)  | 02-08  | 3.15 (5)       | 0.03  |
|     | 02-09     | 2.69 (18) | 02-09  | 2.71 (11)      | 0.02  |
|     | 06-08     | 2.60 (3)  | 06-08  | 2.62 (6)       | 0.02  |
|     | 06-09     | 3.72 (4)  | 06-09  | 3.72 (6)       | 0     |
|     | 08-09     | 3.49 (3)  | 08-09  | 3.50 (10)      | 0.01  |
|     | Volume    | 6.19      | Volume | 6.28           | 0.09  |

**Table S3.** O-O distance surrounding Li-ion sites in pristine LVP-P and pristine LVP-T in the crystal

 structures obtained from Rietveld refinement of high-resolution powder diffraction

|                            | LVP        | -P (°) | LVP-T (°)  |       |  |
|----------------------------|------------|--------|------------|-------|--|
|                            | 011-Li1-O4 | 106.1  | 011-Li1-O4 | 112.3 |  |
|                            | O11-Li1-O2 | 138.6  | O11-Li1-O2 | 147.2 |  |
| т '1                       | 011-Li1-O5 | 96.2   | 011-Li1-O5 | 88.5  |  |
| L11                        | O4-Li1-O2  | 75.2   | O4-Li1-O2  | 81.3  |  |
|                            | O4-Li1-O5  | 111.5  | 04-Li1-O5  | 109.4 |  |
|                            | O2-Li1-O5  | 122.3  | O2-Li1-O5  | 117.1 |  |
|                            | O1-Li2-O8  | 91.3   | 01-Li2-08  | 109.0 |  |
|                            | 01-Li2-06  | 129.4  | 01-Li2-O6  | 142.3 |  |
|                            | O1-Li2-O10 | 119.4  | O1-Li2-O10 | 129.2 |  |
|                            | O1-Li2-O4  | 84.0   | 01-Li2-O4  | 73.1  |  |
| T :0                       | 08-Li2-O6  | 58.6   | 08-Li2-O6  | 70.1  |  |
| L12                        | O8-Li2-O10 | 61.0   | O8-Li2-O10 | 71.1  |  |
|                            | 08-Li2-O4  | 161.7  | 08-Li2-O4  | 166.3 |  |
|                            | O6-Li2-O10 | 83.3   | O6-Li2-O10 | 88.3  |  |
|                            | O6-Li2-O4  | 137.4  | O6-Li2-O4  | 118.2 |  |
|                            | O10-Li2-O4 | 106.7  | O10-Li2-O4 | 97.3  |  |
|                            | O9-Li3-O6  | 134.7  | O9-Li3-O6  | 131.3 |  |
|                            | O6-Li3-O8  | 79.4   | O6-Li3-O8  | 80.3  |  |
|                            | O8-Li3-O1  | 78.1   | 08-Li3-O1  | 81.3  |  |
|                            | O1-Li3-O2  | 60.6   | O1-Li3-O2  | 63.3  |  |
| т:2                        | O2-Li3-O9  | 82.1   | O2-Li3-O9  | 82.3  |  |
| L13                        | O6-Li3-O1  | 68.8   | O6-Li3-O1  | 69.3  |  |
|                            | O9-Li3-O1  | 135.4  | O9-Li3-O1  | 136.3 |  |
| •<br>•<br>•<br>•<br>•<br>• | O9-Li3-O8  | 136.3  | O9-Li3-O8  | 135.3 |  |
| -<br>-<br>-<br>-<br>-      | O2-Li3-O6  | 129.4  | O2-Li3-O6  | 131.5 |  |
|                            | O2-Li3-O8  | 98.3   | O2-Li3-O8  | 101.3 |  |

**Table S4.** O-Li-O angles surrounding Li-ion sites in pristine LVP-P and pristine LVP-T in the crystalstructures obtained from Rietveld refinement of high-resolution powder diffraction

**Table S5.** Structural parameters derived from the EXAFS fitting for pristine LVP-P and pristine LVP-T. Amplitude reduction factors (S0<sup>2</sup>) for the V K-edge spectra are fixed as 0.7. R,  $\sigma^2$ , and  $\Delta E$  denote interatomic distance, degree of disorder, and inner potential shift parameter, respectively.

For LVP-P, the reliable factors are  $\chi^2 = 32.11$ , and R-factor = 0.0073.

For LVP-T, the reliable factors are  $\chi^2 = 37.48$ , and R-factor = 0.0029.

The structural model of  $Li_3V_2(PO_4)_3$  in Yin et al. was used for fitting V-O coordination.

| Fit<br>(R=1.2 Å – 2.1 Å)<br>(k=3 Å <sup>-1</sup> - 13.5 Å <sup>-1</sup> )<br>(S0 <sup>2</sup> =0.7) |   | Pristine of LVP-P<br>(ΔE = -0.4 +/- 0.7) |                      | Pristine $(\Delta E = 2.$ | Debye-<br>Waller<br>factor<br>(σ²) |                                   |
|-----------------------------------------------------------------------------------------------------|---|------------------------------------------|----------------------|---------------------------|------------------------------------|-----------------------------------|
| Coordination<br>number<br>(V-O)                                                                     |   | R(Å)                                     | σ²                   | R(Å) σ²                   |                                    | Difference<br>(LVP-T)-<br>(LVP-P) |
| V1-07                                                                                               | 1 | 1.76 +/- 0.07                            | 0.005 +/- 0.007      | 1.74 +/- 0.04             | 0.010 +/- 0.004                    | 0.005                             |
| V1-011                                                                                              | 2 | 1.930 +/- 0.005                          | 0.0003 +/-<br>0.0005 | 1.926 +/- 0.005           | 0.0009 +/-<br>0.0004               | 0.0006                            |
| V1-02                                                                                               | 1 | 2.05 +/- 0.02                            | 0.002 +/- 0.002      | 2.05 +/- 0.03             | 0.0043 +/-<br>0.0006               | 0.002                             |
| V1-05                                                                                               | 1 | 2.06 +/- 0.01                            | 0.0006 +/-<br>0.0013 | 2.07 +/- 0.04             | 0.001 +/- 0.005                    | 0.0011                            |
| V1-04                                                                                               | 1 | 2.11 +/- 0.02                            | 0.003 +/- 0.002      | 2.12 +/- 0.01             | 0.003 +/- 0.001                    | 0                                 |
| V2-012                                                                                              | 2 | 1.89 +/- 0.01                            | 0.003 +/- 0.001      | 1.90 +/- 0.01             | 0.005 +/- 0.001                    | 0.002                             |
| V2-01                                                                                               | 3 | 2.01 +/- 0.02                            | 0.003 +/- 0.001      | 2.026 +/-<br>0.008        | 0.002 +/-<br>0.0006                | -0.001                            |
| V2-06                                                                                               | 1 | 2.39 +/- 0.02                            | 0.002 +/- 0.003      | 2.38 +/- 0.01             | 0.002 +/- 0.002                    | 0                                 |

**Table S6.** Structural parameters derived from the EXAFS fitting for the full charged states (FC) of LVP-P and LVP-T. Amplitude reduction factors (S0<sup>2</sup>) for the V K-edge spectra are fixed as 0.7. R,  $\sigma^2$ , and  $\Delta E$  denote interatomic distance, degree of disorder, and inner potential shift parameter, respectively.

For LVP-P, the reliable factors are  $\chi^2 = 13.35$ , and R-factor = 0.0064.

For LVP-T, the reliable factors are  $\chi^2 = 17.36$ , and R-factor = 0.0098.

The structural model of  $Li_3V_2(PO_4)_3$  in Yin et al. was used for fitting V-O coordination.

| Fit<br>(R=1.2 Å – 2.1 Å)<br>(k=3 Å <sup>-1</sup> - 13.5 Å <sup>-1</sup> )<br>(S0 <sup>2</sup> =0.7) |   | FC of<br>(ΔE0 = 5 | LVP-P<br>.7 +/- 0.9) | FC of<br>(ΔE0 = 4 | Debye-Waller<br>factor<br>(σ <sup>2</sup> ) |                                   |
|-----------------------------------------------------------------------------------------------------|---|-------------------|----------------------|-------------------|---------------------------------------------|-----------------------------------|
| Coordination<br>number<br>(V-O)                                                                     |   | R(Å)              | σ²                   | R(Å)              | σ²                                          | Difference<br>(LVP-T)-(LVP-<br>P) |
| V1-07                                                                                               | 1 | 1.63 +/- 0.02     | 0.005 +/- 0.003      | 1.59 +/- 0.02     | 0.006 +/- 0.003                             | 0.001                             |
| V1-011                                                                                              | 2 | 1.862 +/- 0.005   | 0.0031 +/-<br>0.0005 | 1.845 +/- 0.009   | 0.0036 +/-<br>0.0001                        | 0.0006                            |
| V1-02                                                                                               | 1 | 1.889 +/- 0.02    | 0.001 +/- 0.002      | 1.887 +/- 0.013   | 0.001 +/- 0.001                             | 0.000                             |
| V1-05                                                                                               | 1 | 2.06 +/- 0.02     | 0.004 +/- 0.003      | 2.05 +/- 0.04     | 0.007 +/- 0.005                             | 0.003                             |
| V1-04                                                                                               | 1 | 2.23 +/- 0.02     | 0.002 +/- 0.002      | 2.23 +/- 0.01     | 0.003 +/- 0.001                             | 0.001                             |
| V2-012                                                                                              | 2 | 1.98 +/- 0.02     | 0.001 +/- 0.002      | 1.94 +/- 0.01     | 0.0023 +/-<br>0.0008                        | 0.0013                            |
| V2-01                                                                                               | 3 | 2.05 +/- 0.01     | 0.008 +/- 0.002      | 2.05 +/- 0.04     | 0.005 +/- 0.001                             | -0.003                            |
| V2-06                                                                                               | 1 | 2.39 +/- 0.02     | 0.0003 +/-<br>0.002  | 2.37 +/- 0.03     | 0.0022 +/-<br>0.0039                        | 0.0019                            |