Cellular structured Cu$_2$Sn$_{0.8}$Co$_{0.2}$S$_3$ with enhanced thermoelectric performance realized by liquid-phase sintering

Yan Gua, Wen Aia, Jiaxin Chena, Anqi Zhaoa, Xiaohui Hua,*, Pengan Zonga, Lin Pana,b, Chunhua Lua,b, Chunlei Wanc,* and Yifeng Wanga,b,*

aCollege of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

bJiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China

cState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Figure S1. XRD patterns for both powder and bulk Cu$_{2}$Sn$_{0.8}$Co$_{0.2}$S$_{3}$-0.05Sn samples.

Figure S2. Field emission scanning electron microscopy (FE-SEM) images for the fracture surface of (a, b) Cu$_{2}$Sn$_{0.8}$Co$_{0.2}$S$_{3}$ and (c, d) Cu$_{2}$Sn$_{0.8}$Co$_{0.2}$S$_{3}$-0.05Sn.
Figure S3. Cycle test for temperature dependent (a) electrical conductivity, (b) Seebeck coefficient and (c) power factor of $\text{Cu}_2\text{Sn}_{0.8}\text{Co}_{0.2}\text{S}_3-0.05\text{Sn}$.