Supplementary Material

Stability improvement of the Pt/TiO₂ photocatalyst during photocatalytic pure water splitting

Xinyi Zhang,^{a,c} Chunling Bo,^{a,c} Shuang Cao,^a Zhijie Cheng,^a Zhaozhong Xiao,^a Xiaolong Liu,^a Ting Tan ^{a,*} and Lingyu Piao ^{a,b,*}

^a National Center for Nanoscience and Technology, Beijing 100190, China ^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China ^c University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author.

E-mail address: tant@nanoctr.cn (T. Tan), piaoly@nanoctr.cn (L. Piao).

TABLE OF CONTENTS

Supplementary material1
S1. Supplementary Figures4
Fig. S1 The single stability of the Pt/b-TiO ₂ NFs photocatalyst4
Fig. S2 TEM images of the Pt/b-TiO ₂ NFs, (A) and (B) show the photocatalyst
after 20h and 40h reaction, respectively5
Fig. S3 (a), (b), (c), and (d) are the TEM images with higher resolution of the Pt/b-
TiO ₂ NFs after reaction for 0 h, 1 h, 20 h, and 40 h, respectively6
Fig. S4 (a), (b), (c), and (d) are the HRTEM images of the Pt/b -TiO ₂ NFs after
reaction for 0 h, 1 h, 20 h, and 40 h, respectively7
Fig. S5 Statistical histogram of Pt nanoparticles size distribution after reaction for
0 h, 1 h, 20 h, and 40h, respectively
Fig. S6 EPR spectra of the Pt/b-TiO $_2$ NFs soaked in H $_2O_2$ for 20 h and 40 h,
respectively9
Fig. S7 UV-Vis absorption spectra of the Pt/b -TiO ₂ NFs immersed in H ₂ O and
H ₂ O ₂ 10
Fig. S8 Photoluminescence emission spectra of the Pt/b-TiO ₂ NFs immersed in
H ₂ O and H ₂ O ₂ 11
Fig. S9 Simulation diagram of in-situ photocatalyst regeneration strategy12
Fig. S10 The UV spectra for o-tolidine oxidation test of detecting peroxide13
Fig. S11 UV-Vis absorption spectra of the fresh, reacted for 40 h, and regenerated
Pt/b-TiO ₂ NFs photocatalyst14
Fig. S12 Photocurrent I-t curves of the fresh, reacted for 40 h, and regenerated
photocatalyst Pt/b-TiO ₂ NFs15
Fig. S13 Photoluminescence emission spectra of the fresh, reacted for 40 h, and
regenerated photocatalyst Pt/b-TiO ₂ NFs16
Fig. S14 XPS spectra of (a) O 1s, (b) Ti 2p and (c) Pt 4f of the fresh, reacted for
40 h, and regenerated photocatalyst Pt/b-TiO ₂ NFs17
Fig. S15 FTIR spectra of the fresh, reacted for 40 h, and regenerated photocatalyst 2

Pt/b-TiO ₂ NFs	18
S2. Supplementary Tables	19
Table. S1 Quantitative analysis of Pt/b-TiO ₂ NFs after 0 h, 1 h	, 20 h, and 40 h of
UV light irradiation	19
Table. S2 Comparison of data on the stability of photocatalysts	for photocatalytic
overall water splitting	20

S1. Supplementary Figures

Fig. S1 The single stability of the Pt/b-TiO₂ NFs photocatalyst.

Fig. S2 TEM images of the Pt/b-TiO₂ NFs, (a) and (b) show the photocatalyst after 20 h and 40 h reaction, respectively.

Fig. S3 (a), (b), (c), and (d) are the TEM images with higher resolution of the $Pt/b-TiO_2$ NFs after reaction for 0 h, 1 h, 20 h, and 40 h, respectively.

Fig. S4 (a), (b), (c), and (d) are the HRTEM images of the Pt/b-TiO₂ NFs after reaction for 0 h, 1 h, 20 h, and 40 h, respectively.

Fig. S5 (a), (b), (c), (d) are the statistical histogram of Pt nanoparticles size distribution after reaction for 0 h, 1 h, 20 h, and 40 h, respectively. (e) Statistical chart of Pt particle size percentage after the reaction for 0 h, 1 h, 20 h, and 40h.

The average dimensions (a) of 5.0 ± 1.7 nm (Mean of $\mathcal{N} = 200$ measurements, \pm SD) are Pt before the reaction (0h). And 5.2 ± 2.7 nm (b), 5.1 ± 2.3 nm (c), and 5.3 ± 2.3 nm (d) are average dimensions of Pt nanoparticles after the reaction for 1 h, 20 h, and 40 h, respectively. Particle sizes are all concentrated at 4~6 nm (Fig. S3e), and there is no obvious change before and after the reaction.

Fig. S6 EPR spectra of the Pt/b-TiO₂ NFs soaked in H_2O_2 for 20 h and 40 h, respectively.

Fig. S7 UV-Vis absorption spectra of the Pt/b-TiO₂ NFs immersed in H_2O and H_2O_2 . The H_2O_2 concentration here is the same as the H_2O_2 concentration under reaction conditions.

Fig. S8 Photoluminescence emission spectra of the $Pt/b-TiO_2$ NFs immersed in H_2O and H_2O_2 . The H_2O_2 concentration here is the same as the H_2O_2 concentration under reaction conditions.

Fig. S9 Simulation diagram of in-situ photocatalyst regeneration strategy.

Fig. S10 The UV spectra for *o*-tolidine oxidation test of detecting peroxides. (a) the Pt/b-TiO₂ NFs photocatalyst after 40 h reaction, (b) the regenerated Pt/b-TiO₂ NFs photocatalyst. The Pt/b-TiO₂ NFs photocatalyst after 40 h reaction has strong characteristic absorption at 438 nm, indicating that H_2O_2 is adsorbed on the photocatalyst surface. The regenerated sample does not have this characteristic absorption peak, indicating that there is no H_2O_2 adsorbed on the surface of the regenerated photocatalyst.

Fig. S11 UV-Vis absorption spectra of the fresh, reacted for 40 h, and regenerated Pt/b-TiO₂ NFs photocatalyst.

Fig. S12 Photocurrent I-t curves of the fresh, reacted for 40 h, and regenerated Pt/b-TiO₂ NFs photocatalyst.

Fig. S13 Photoluminescence emission spectra of the fresh, reacted for 40 h, and regenerated Pt/b-TiO₂ NFs photocatalyst.

Fig. S14 XPS spectra of (a) O 1s, (b) Ti 2p and (c) Pt 4f of the fresh, reacted for 40 h, and regenerated Pt/b-TiO₂ NFs photocatalyst.

Most of the regenerated Pt could not return to the initial state, because the content of Pt^{2+} gradually increased with the progress of the photocatalytic pure water splitting reaction, and the bubbling regeneration method could not reduce the content of oxidized Pt.

Fig. S15 FTIR spectra of the fresh, reacted for 40 h, and regenerated $Pt/b-TiO_2$ NFs photocatalyst.

S2. Supplementary Tables

8			
	Lattice oxygen (Ti-O)	Surface Hydroxyl (Ti-OH)	Physisorbed Water
Oh	74.47%	14.36%	11.17%
UV-1h	63.14%	20.85%	16.01%
UV-20h	64.17%	18.37%	17.46%
UV-40h	73.15%	15.77%	11.09%
Regeneration	79.11%	13.30%	7.59%

Table. S1 Quantitative analysis of Pt/b-TiO₂ NFs after 0 h, 1 h, 20 h, and 40 h of UV light irradiation.

	Ti ⁴⁺ 2p _{5/2}	$Ti^{3+}2p_{5/2}$	$Ti^{4+} 2p_{3/2}$
Oh	53.87%	8.48%	37.65%
UV-1h	68.00%	6.75%	25.25%
UV-20h	68.90%	7.95%	23.15%
UV-40h	69.56%	5.28%	25.15%
Regeneration	55.07%	7.60%	37.33%

	Pt ⁰ 4f _{7/2}	Pt ⁰ 4f _{5/2}	Pt ²⁺ 4f _{7/2}	$Pt^{2+}4f_{5/2}$
Oh	5.90%	23.13%	11.07%	59.90%
UV-1h	17.44%	46.36%	0.95%	35.25%
UV-20h	13.02%	19.67%	4.06%	63.25%
UV-40h	13.02%	19.66%	4.05%	63.27%
Regeneration	11.95%	20.39%	0.71%	67.05%

Table. S2 Comparison of data on the stability of photocatalysts for photocatalytic overall water splitting. In the past three years, the highest stability time was 216 h, and 95% of them were stable for 20~30 h.

Reference	Stability	Image
Self-assembly photocatalytic reduction synthesis of graphene- encapusulated LaNiO ₃ nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen, Chemical Engineering Journal, 2018, 356, 580-591.	36 h	$10^{-1}_{(b)}$ $10^{-1}_{(b)$
Highly efficient photocatalytic overall water splitting on plasmonic Cu ₆ Sn ₅ /polyaniline nanocomposites, Journal of Colloid and Interface Science, 2021,609, 785-793.	20 h	$\begin{array}{c} 600 \\ \hline (b) \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
CdS@Mg(OH) ₂ core/shell composite photocatalyst for efficient visible-light photocatalytic overall water splitting, International Journal of Hydrogen Energy, 2022, 47(14), 8729-8738.	20 h	(d) 1500 1200 $CdS@3%Mg(OH)_3$ F'_{00} 900 H'_{00} f'_{00} f'_{0

Overall photocatalytic water splitting by an organolead iodide crystalline material, Nature Catalysis, 2020, 3(12), 1027-1033.	15 h	(100 1st 2nd 3rd 4th 5th H ₂ 80 40 40 40 40 40 5th 40 5
Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting, Nature Energy, 2021, 6(4), 388-397.	32 h	d 120 120 120 0 0 0 8 10 0 120 0 0 120 0 0 120 0 0 120 0 0 120 0 0 120 0 0 120 0 120 0 15 16 16 16 16 16 16 16 16 16 16
Single-atom Cu anchored catalysts for photocatalytic renewable H ₂ production with a quantum efficiency of 56%, Nature Communications, 2022, 13(1), 1-10.	30 h	H^{2} evolution rate H^{2} (mmol \dot{a}_{-1}) \dot{a}_{-1} \dot{a}_{-1} \dot{a}_{-1
The high photocatalytic efficiency and stability of LaNiO ₃ /g-C ₃ N ₄ heterojunction nanocomposites for photocatalytic water splitting to hydrogen, BMC chemistry, 2022, 14(1), 1-13.	20 h	C 3750 3000 2250 Time (b)
Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting, Nano Energy, 2021, 83, 105783-105783.	16 h	
Z-scheme photocatalyst Pt/GaP- TiO ₂ -SiO ₂ : Rh for the separated H ₂ evolution from photocatalytic seawater splitting, Applied Catalysis B: Environmental, 2021, 296,	16 h	$\begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

