Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Glutamate Anion Boosted Zinc for Deep Cycling Aqueous Zinc Ion Batteries

Yu Liu,^{a, #} Junhui Wang,^{b, #} Jianguo Sun,^{b, #} Fangyu Xiong,^a Qin Liu,^a Yongkang An,^a Lei Shen,^c John Wang,^{b, e} Qinyou An,^{a, d, *} Liqiang Mai ^{a, d, *}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan 430070, China.

^b Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.

^c Department of Mechanical Engineering, National University of Singapore, Singapore,

117575, Singapore.

^d Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.

^e Institute of Materials Research and Engineering, A*Star, Singapore, 138634, Singapore.

[#] Authors contribute equally to this work.

*Corresponding authors. E-mail: anqinyou86@whut.edu.cn (Q. An), mlq518@whut.edu.cn (L. Mai)

The authors declare no competing financial interest.

Figure S1. The XRD patterns of the Zn soaked in ZnSO₄ and MSG/ZnSO₄ for 5 days.

Figure S2. The Tafel plots of Zn in $ZnSO_4$ and $MSG/ZnSO_4$ electrolyte at a scan rate of 5 mV s⁻¹ using three-electrode system.

Figure S3. The ATR-FTIR of MSG/ZnSO₄ and ZnSO₄ electrolyte.

Chemical shift (ppm) Figure S4. ²H NMR spectra of D₂O from MSG (0.01M), ZnSO₄, x M MSG/ZnSO₄ (x is denoted as the concentration of MSG).

Figure S5. The electrochemical performance of Zn symmetric cell using 0.01M NaSO₄ + ZnSO₄ electrolyte.

Compared with the pure $ZnSO_4$ electrolyte, the cycle life of the symmetric battery using 0.01M NaSO₄ + ZnSO₄ electrolyte is not significantly improved, indicating that the improvement of the cycling stability of the symmetric battery using MSG/ ZnSO₄ is due to the introduction of Glu anions.

Figure S6. The electrochemical performance of Zn symmetric cell using MSG/ ZnSO₄ electrolyte with different concentrations of MSG.

Figure S7. Comparison of HER performance under ZnSO₄ and MSG/ZnSO₄ electrolyte systems.

Figure S8. The EDS Mapping of Zn anode tested in MSG/ZnSO₄ electrolyte for 50 cycles in a current density of 1mA cm⁻² with an area capacity of 1mAh cm⁻².

Figure S9. The XPS depth profile for Na 1s of Zn anode surface using in MSG/ZnSO₄ electrolyte for 50 cycles.

Figure S10. The reduction reactions process of Glu⁻ on Zn metal surface.

Figure S11. The XRD spectra of Zn anode tested in $ZnSO_4$ and $MSG/ZnSO_4$ electrolyte for 50 cycles in a current density of 1mA cm⁻² with an area capacity of 1 mAh cm⁻².

Figure S12. Comparison of Arrhenius curves and activation energies of Zn//Zn symmetric cells using ZnSO₄ and MSG/ ZnSO₄ electrolyte after 20 cycles.

Figure S13. SEM images of the MnO₂.

The morphology of the MnO_2 is sea urchin-like microspheres self-assembled from stripshaped nanosheets.

The diffraction peaks of the MnO_2/CNT composite are well-indexed to the characteristic peaks of α -MnO₂ (PDF# 44-0141).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Salt and additive	solvent	Current density (mA cm ⁻²)	Plated capacity (mAh cm ⁻²)	Cycle	Time(h)	Cumulative plated capacity (Ah cm ⁻²)	Ref
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1M ZnOTF + 1mg ml ⁻¹ SDBS		0.5	0.25	1500	1500	0.375	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1M ZnSO ₄ + 0.5 M NaSO ₄		0.2	0.2	150	300	0.075	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	2	150	300	0.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2M\ ZnSO_4 + 0.05$		5	2	570	456	1.14	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M TBA ₂ SO ₄		10	2	1000	400	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5	5	80	160	0.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IM ZnSO ₄ +0.1 M TSC		5	1.25	840	420	1.05	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1M ZnOTF +	H_2O	1	1	550	1100	0.55	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.05Mm DA		10	10	100	200	1	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>-</u> .	30	30	39	78	1.17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1M ZnOTF +		l	<u> </u>	600	1200	0.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.025Mm		I	5	80	800	0.4	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zn(H_2PO_4)_2$		5		230	220	0.55	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2M ZnSO ₄ + 0.2	-	0.2	0.2	140	280	0.10	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{M \operatorname{Co}_2 \operatorname{SO}_4}{1 \operatorname{M} 7}$		1	1	1000	2000	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1M ZnSO_4 + 0.01$			1	1000	2000	1	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WI Glucose		<u> </u>	<u> </u>	1075	2/0	0.075	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2M ZnSO ₄	=1/4(v/v)	3	3	1075	2130	0.3	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5	3	100	200	0.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3 M ZnCl ₂	=1/4.3 (v/v)	0.5	0.5	500	1000	0.25	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0M ZnSO ₄ +1g L ⁻¹ PAM			1	90	180	0.09	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	4	70	280	0.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	1	(50	(50	1.1	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0M ZnSO ₄		5	0.5	400	650	0.325	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+0.12wt% GO		10	2.3	140	1400	0.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H ₂ O	2	4	300	1200	1.2	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2M ZnSO ₄ +0.05		5	10	202	808	2.02	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KPF_6		10	20	62	250	1.24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3 \text{ MZn}(\text{CF}_3\text{SO}_3)_2$		0.2	0.2	125	250	0.025	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{+2 \text{ Vol} \% \text{ Et}_2 \text{O}}{1 \text{M ZnSO}_4 + 3 \text{M}}$		1	1	350	700	0.35	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	urea			1		100	0.33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IM 750 +0.075M		2	2	225	450	0.45	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₄ FDTA		5	2	2500	2000	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2M ZnSO_4+0.4\sigma$		0.8	0.2	4400	2200	0.88	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L ⁻¹ GODs		2	0.2	3600	1800	0.72	. 17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1M ZnSO ₄ +0.3g		1	1	1500	3000	1.5	18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	2	450	900	0.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L · veratraidenyde		5	5	400	800	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2M ZnSO ₄	NMP/H ₂ O = $1/20(y/y)$	1	1	270	540	0.27	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2M ZnSO ₄ +		10	10	275	550	2.75	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5g L ⁻¹ SAC	H ₂ O	40	10	220	110	2.2	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 M Zn(BF ₄) ₂ +	DOL	0.1	1	900	1800	0.9	. 21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 mM Al(OTf) ₃		1	0.5	900	1800	0.45	
$\frac{Me_3EtNOTF}{4 M Zn(TFSI)_2 + 0.5 0.5 3000 6000 1.5 ^{23}}$	4 M Zn(CF ₃ SO ₃) ₂ + 0.5 M	H2O	0.5	0.25	6000	6000	1.5	22
	$\frac{\text{Me}_3\text{EtNOTF}}{4 \text{ M 7n(TFSD}_2 + 1)}$	-	0.5	0.5	3000	6000	15	23

Table S1. Summary of the previous published CPC result in aqueous Zn ion battery.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.	
This journal is © The Royal Society of Chemistry 2022	

4 M P444 ₍₂₀₁₎ -		1	1	400	800	0.4	
TFSI		2.5	2.5	125	250	0.3125	
2 M ZnSO ₄ + 0.08 M ZnF ₂		1	1	300	600	0.3	24
2 M ZnSO ₄ + 8		0.5	0.5	1600	3200	0.8	25
mg mL ⁻¹ PASP		20	1	2000	200	2	
2 M ZnSO ₄ + 0.05		1	1	1750	3500	1.75	26
M H ₄ OAc		10	1	5000	1000	5	- 20
1 M ZnSO ₄ + 4 M EMImCl		1	1	250	500	0.25	27
		1	2	250	1000	0.25	_
$2 \text{ M ZnSO}_4 + 0.5$		2	2	450	900	0.9	28
g L ⁻¹ TMBAC		5	5	300	600	1.5	20
		10	5	500	500	2.5	
1 M 7 - 80 + 0.01		1	1	2000	4000	2	
$1 \text{ IM } \Sigma \text{IISO}_4 + 0.01$	H_2O	10	10	260	520	2.6	- I his
		20	20	88	176	1.76	- work

References

- 1 J. Hao, J. Long, B. Li, X. Li, S. Zhang, F. Yang, X. Zeng, Z. Yang, W. K. Pang and Z. Guo, *Adv. Funct. Mater.*, 2019, **29**, 1903605.
- 2 Y. Xu, J. Zhu, J. Feng, Y. Wang, X. Wu, P. Ma, X. Zhang, G. Wang and X. Yan, *Energy Storage Mater.*, 2021, **38**, 299-308.
- 3 A. Bayaguud, X. Luo, Y. Fu and C. Zhu, *ACS Energy Lett.*, 2020, **5**, 3012-3020.
- 4 N. Wang, S. Zhai, Y. Ma, X. Tan, K. Jiang, W. Zhong, W. Zhang, N. Chen, W. Chen, S. Li, G. Han and Z. Li, *Energy Storage Mater.*, 2021, **43**, 585-594.
- 5 X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao, J. Liu, W. K. Pang, J. Liu, P. Rao, Q. Wang, J. Mao and Z. Guo, *Energy Environ. Sci.*, 2021, **14**, 5947-5957.
- 6 X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J. Liu, P. Rao and Z. Guo, *Adv. Mater.*, 2021, **33**, e2007416.
- 7 L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang, Z. Liu, Z. Wang, Y. Huang, Z. Pei, J. A. Zapien and C. Zhi, *Energy Environ. Sci.*, 2018, **11**, 2521-2530.
- 8 P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao and W. Mai, *Angew. Chem. Int. Ed.*, 2021, **60**, 18247-18255.
- 9 D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao and P. Wu, *Small*, 2021, **17**, e2103195.
- 10 L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang and C. Wang, *J. Am. Chem. Soc.*, 2020, **142**, 21404-21409.
- 11 Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji and H. Wang, *Angew. Chem. Int. Ed.*, 2019, **58**, 15841-15847.
- 12 J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong, S. Kheawhom, P. Wangyao and J. Qin, *ACS Appl. Energy Mater.*, 2021, **4**, 4602-4609.
- 13 Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui and J. Luo, *Energy Environ. Sci.*, 2021, 14, 3609-3620.
- 14 W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu, H. Cheng, L. Mai, C. Hu and X. Wang, *Nano Energy*, 2019, **62**, 275-281.
- Z. Hou, M. Dong, Y. Xiong, X. Zhang, H. Ao, M. Liu, Y. Zhu and Y. Qian, *Small*, 2020, 16, e2001228.
- 16 S. J. Zhang, J. Hao, D. Luo, P. F. Zhang, B. Zhang, K. Davey, Z. Lin and S. Z. Qiao, *Adv. Energy Mater.*, 2021, **11**, 2102010.
- 17 H. Zhang, R. Guo, S. Li, C. Liu, H. Li, G. Zou, J. Hu, H. Hou and X. Ji, *Nano Energy*, 2022, **92**, 106752.
- 18 M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui and W. Mai, *Nano-Micro Lett.*, 2021, 14, 31.
- 19 T. C. Li, Y. Lim, X. L. Li, S. Luo, C. Lin, D. Fang, S. Xia, Y. Wang and H. Y. Yang, *Adv. Energy Mater.*, 2022, DOI: 10.1002/aenm.202103231, 2103231.
- 20 C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu and X. Chen, *Adv. Mater.*, 2021, **33**, e2100445.
- 21 L. Ma, S. Chen, X. Li, A. Chen, B. Dong and C. Zhi, *Angew. Chem. Int. Ed.*, 2020, **59**, 23836-23844.
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin and C. Wang, *Nat. Nanotechnol.*, 2021, 16, 902-910.
- L. Ma, T. P. Pollard, Y. Zhang, M. A. Schroeder, M. S. Ding, A. V. Cresce, R. Sun, D. R. Baker, B. A. Helms, E. J. Maginn, C. Wang, O. Borodin and K. Xu, *Angew. Chem. Int. Ed.*, 2021, 60, 12438-12445.
- 24 Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu, S. Xiong, J. Feng and Y. Qian, *Adv. Funct. Mater.*, 2021, **31**, 2101886.
- 25 T. Zhou, Y. Mu, L. Chen, D. Li, W. Liu, C. Yang, S. Zhang, Q. Wang, P. Jiang, G. Ge and H. Zhou, *Energy Storage Mater.*, 2022, **45**, 777-785.

- D. Han, Z. Wang, H. Lu, H. Li, C. Cui, Z. Zhang, R. Sun, C. Geng, Q. Liang, X. Guo, Y. Mo, X. Zhi, F. Kang, Z. Weng and Q. H. Yang, *Adv. Energy Mater.*, 2022, 12, 2102982.
- 27 Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin, L. Li, Z. Yan, Q. Zhao, K. Zhang and J. Chen, *Angew. Chem. Int. Ed.*, 2021, **60**, 23357-23364.
- 28 K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang, H. Wan, J. Cui, J. Zhang, H. Wang and H. Wang, *Adv. Energy Mater.*, 2022, **12**, 2103557.