Supporting information

Theoretically revealing the activity origin of hydrogen evolution reaction on carbon-based single-atom catalysts and finding the ideal catalysts for water splitting

Yiran Wang, Xiaoya Huang, Hanwei Fu, Jiaxiang Shang*

School of Materials Science and Engineering, Beihang University, Beijing 100191,

China

* Corresponding Author

Jiaxiang Shang: shangjx@buaa.edu.cn

Fig. S1 Deviation degree (φ) between the TM atoms and the defect center in (a) C₂N
(b) C₃N₄. (c) 1/R of the 3*d*, 4*d* and 5*d* TM atoms.

Fig. S2 (a) Radial distribution function (RDF) between Co and N on C_3N_4 . (b) The charge density difference (CDD) of Co- C_3N_4 . (c) RDF between Ag and N on C_3N_4 . (d) The CDD of Ag- C_3N_4 . Yellow and cyan regions represent the charge accumulation and depletion, respectively. The value of iso-surface is 0.003 e Å⁻³.

Fig. S3 The red dots represent the average bond lengths $(d_{TM}-x)$ between the TM atom and the coordination atoms, the black squares are the charge transfer from the TM atoms to carbon-based supports.

Fig. S4 The top and side views of H adsorbed on $Cr/Mn/Fe/Co/Ni/Cu-C_3N_4$ (denoted as H-TM-C₃N₄). The blue, grey, cyan, purple, golden, pink, white, light-blue, dark-green and spheres represent the N, C, Cr, Mn, Fe, Co, H, Ni and Cu atoms, respectively.

Fig. S5 Top and side views of (a) planar and (b) buckle H-Co-C₃N₄, respectively. The blue, grey, pink and white spheres represent the N, C, Co and H atoms, respectively.

Fig. S6 GB model prediction accuracy by the stepwise feature selection method. Each dot indicates a combination of features. The red dot represents the combination with the minimum MAE and maximum R^2 .

Fig. S7 Different model prediction accuracy by the stepwise feature selection method. Each dot indicates a combination of features. The combination with the minimum MAE and maximum R^2 has been listed.

In order to clarify whether the accuracy of other ML models will be higher than that of GB model after dimensionality reduction, we also performed RFE (combining features importance ranking) for other ML models in Fig. S7. The results indicated that the GB model remains to exhibit the highest accuracy. For KNN, GP, MLP and SVR models, we adopted the analysis framework of SHAP (Shapley Additive exPlanation) to interpret the importance of each feature and performed feature importance ranking.

TM	TM-N-C	ТМ-С	TM-MOF	TM-COF
Sc	2.08	2.20	2.13	2.14
Ti	1.98	2.07	2.01	2.11
V	1.96	2.02	2.00	2.08
Cr	1.95	2.01	1.98	2.04
Mn	1.91	2.00	1.93	2.08
Fe	1.89	1.96	1.89	1.96
Со	1.87	1.94	1.85	2.00
Ni	1.87	1.88	1.85	2.00
Cu	1.93	1.91	1.99	2.08
Zn	1.96	1.95	2.03	2.02
Y	2.20	2.32	2.27	2.26
Zr	2.13	2.17	2.16	2.19
Nb	2.06	2.09	2.08	2.13
Мо	2.02	2.07	2.05	2.10
Te	1.98	2.04	2.02	2.05
Ru	1.96	2.02	1.97	2.02
Rh	1.95	2.02	1.98	2.03
Pd	1.96	1.96	1.98	2.14
Ag	2.01	1.99	2.25	2.31
Cd	2.21	2.04	2.22	2.21
Hf	1.87	2.16	2.13	2.16
Ta	2.04	2.10	2.05	2.10
W	1.99	2.05	2.02	2.07
Re	1.99	2.04	2.02	2.05
Os	1.95	2.02	1.97	2.01
Ir	1.95	2.01	1.97	2.14
Pt	1.96	1.97	1.98	2.09
Au	1.97	2.00	1.99	2.27

Table S1 Average bond distance (Å) between TM atom and coordination atoms onTM-N-C, TM-C, TM-MOF and TM-COF catalysts.

System	TM-Pc	TM-GDY	TM-C ₂ N	TM-C ₃ N ₄
Sc	2.06	2.18	2.67	2.35
Ti	2.00	2.11	2.68	2.33
V	2.00	1.99	2.75	2.33
Cr	1.98	1.96	2.75	2.38
Mn	1.95	1.96	2.73	2.38
Fe	1.93	1.95	2.75	2.36
Со	1.92	1.94	2.79	2.43
Ni	1.91	1.95	2.80	2.43
Cu	1.96	2.04	2.80	2.39
Zn	2.00	2.11	2.79	2.38
Y	2.10	2.32	2.64	2.36
Zr	2.12	2.22	2.64	2.35
Nb	2.04	2.16	2.64	2.33
Мо	2.03	2.06	2.73	2.32
Tc	2.00	2.05	2.73	2.37
Ru	1.99	2.05	2.77	2.41
Rh	1.97	2.04	2.77	2.37
Pd	1.99	2.07	2.78	2.41
Ag	2.06	2.16	2.74	2.43
Cd	2.11	2.22	2.71	2.41
Hf	2.08	2.24	2.64	2.34
Та	2.03	2.16	2.63	2.32
W	2.03	2.05	2.73	2.31
Re	2.00	2.05	2.72	2.28
Os	1.99	2.03	2.77	2.41
Ir	1.97	2.03	2.78	2.44
Pt	1.99	2.06	2.78	2.42
Au	2.01	2.13	2.74	2.44

Table S2 Average bond distance (Å) between TM atom and coordination atoms on TM-Pc, TM-GDY, TM- C_2N and TM- C_3N_4 catalysts.

	TM	-N-C	TN	1- C	TM-	C ₃ N ₄	TM-N	AOF
ТМ	Ef	U _{diss}	Ef	U _{diss}	Ef	U _{diss}	Ef	U _{diss}
Sc	-4.15	-0.70	-3.13	-1.04	-2.57	-1.22	-5.73	-0.17
Ti	-2.69	-0.28	-3.86	0.30	-1.14	-1.06	-4.75	0.75
V	-2.18	-0.09	-2.76	0.20	0.11	-1.23	-3.97	0.80
Cr	-2.84	0.51	-2.85	0.52	0.75	-1.29	-3.86	1.02
Mn	-2.87	0.25	-3.08	0.35	0.55	-1.46	-3.87	0.75
Fe	-2.42	0.76	-2.70	0.90	1.48	-1.19	-3.24	1.17
Со	-2.75	1.09	-2.80	1.12	1.69	-1.13	-3.45	1.44
Ni	-2.85	1.17	-3.13	1.31	1.58	-1.05	-3.14	1.31
Cu	-1.63	1.16	-3.17	1.92	1.51	-0.41	-2.20	1.44
Zn	-2.51	0.50	-3.38	0.93	1.09	-1.30	-3.35	0.92
Y	-4.04	-1.02	-2.94	-1.39	-3.05	-1.35	-5.50	-0.54
Zr	-2.67	-0.78	-4.03	-0.44	-1.71	-1.02	-5.09	-0.18
Nb	-1.17	-0.71	-0.05	-1.08	0.05	-1.12	-3.20	-0.03
Mo	-0.02	-0.19	-2.45	0.62	1.97	-0.86	-2.54	0.65
Tc	-0.46	0.63	-2.83	1.82	2.95	-1.07	-2.25	1.53
Ru	-0.76	0.84	-2.99	1.96	3.03	-1.06	-2.32	1.62
Rh	-1.93	1.57	-2.93	2.07	2.56	-0.68	-3.12	2.16
Pd	-2.51	2.20	-2.67	2.29	1.81	0.05	-3.06	2.48
Ag	0.24	0.56	-2.17	2.97	1.12	-0.32	-1.37	2.17
Cd	-0.73	-0.03	-2.04	0.62	0.88	-0.84	-2.38	0.79
Hf	-2.67	-0.88	-3.74	-0.62	-1.39	-1.20	-4.55	-0.41
Ta	-0.80	-0.33	-3.02	0.41	0.86	-0.89	-3.22	0.47
W	0.80	-0.17	-2.06	0.79	3.05	-0.92	-1.88	0.73
Re	0.55	0.12	-2.30	1.07	4.06	-1.05	-1.59	0.83
Os	-0.09	0.85	-2.67	1.17	4.42	0.29	-2.17	1.11
Ir	-1.63	1.70	-3.07	2.18	3.27	0.07	-3.06	2.18
Pt	-2.85	2.61	-4.16	3.26	2.91	-0.28	-3.60	2.98
Au	0.18	1.44	-3.31	2.60	3.09	0.47	-0.84	1.78

Table S3 The calculated E_f (eV) and U_{diss} for 3*d*, 4*d* and 5*d* TM embedding in N-C, C, C₃N₄ and MOF.

	TM	-C ₂ N	TM-	COF	ТМ	I-Pc	TM-	GDY
ТМ	Ef	U _{diss}	E _f	U _{diss}	E _f	U _{diss}	E _f	U _{diss}
Sc	-3.59	-0.88	-0.50	-1.91	-6.74	0.17	1.62	-2.62
Ti	-1.82	-0.72	0.53	-1.89	-6.02	1.38	1.89	-2.58
V	-0.65	-0.86	0.98	-1.67	-5.98	1.81	2.69	-2.53
Cr	-0.35	-0.73	1.17	-1.49	-5.89	2.03	2.16	-1.99
Mn	-0.45	-0.97	1.20	-1.79	-5.62	1.62	0.87	-1.62
Fe	0.51	-0.70	2.03	-1.47	-4.99	2.05	0.86	-0.88
Со	0.74	-0.65	1.61	-1.09	-5.09	2.26	-0.03	-0.27
Ni	0.56	-0.54	1.38	-0.95	-5.26	2.37	2.55	-1.53
Cu	0.51	0.08	1.44	-0.38	-4.15	2.41	0.65	0.02
Zn	-0.19	-0.67	1.13	-1.32	-5.17	1.83	1.91	-1.72
Y	-4.91	-0.73	-0.58	-2.18	-7.85	0.25	2.77	-3.29
Zr	-2.72	-0.77	0.69	-1.62	-5.48	-0.08	3.20	-2.25
Nb	-0.72	-0.86	2.02	-1.77	-4.14	0.28	3.62	-2.31
Mo	0.74	-0.45	2.61	-1.07	-3.79	1.06	2.31	-0.97
Tc	1.32	-0.26	2.80	-1.00	-3.78	2.29	3.72	-1.46
Ru	1.53	-0.30	2.35	-0.71	-3.74	2.33	3.17	-1.13
Rh	0.77	0.21	1.54	-0.17	-4.62	2.91	1.96	-0.38
Pd	0.38	0.76	1.35	0.28	-5.42	3.66	0.73	0.59
Ag	-0.31	1.11	1.30	-0.50	-2.86	3.66	1.86	-1.06
Cd	-0.78	-0.01	1.61	-1.20	-3.43	1.31	3.15	-1.97
Hf	-2.27	-0.98	0.93	-1.78	-5.17	-0.26	3.28	-2.37
Та	-0.05	-0.58	2.68	-1.49	-4.06	0.75	4.12	-1.97
W	2.03	-0.58	3.86	-1.19	-3.05	1.12	5.16	-1.62
Re	2.65	-0.58	4.16	-1.09	-2.97	1.29	4.56	-1.22
Os	2.61	0.51	3.34	0.42	-3.15	1.23	3.75	0.37
Ir	1.52	0.65	2.31	0.39	-4.51	2.66	2.30	0.39
Pt	1.27	0.55	1.83	0.27	-5.88	4.12	0.84	0.76
Au	1.47	1.01	2.70	0.60	-2.71	2.40	2.55	0.65

Table S4 The calculated E_f (eV) and U_{diss} for 3*d*, 4*d* and 5*d* TM embedding in C₂N, COF, Pc and GDY.

		TM-N-C			ТМ-С	
System	d _{H-TM}	Μ	ΔG_{H^*}	d _{H-TM}	Μ	ΔG_{H^*}
Sc	2.38	0.00	0.28	2.65	0.00	0.92
Ti	1.74	0.39	-0.75	2.40	0.00	0.49
V	1.66	0.57	0.09	1.66	0.00	-0.09
Cr	1.6	2.71	0.24	1.58	2.14	0.26
Mn	1.55	2.21	0.35	1.57	2.19	0.32
Fe	1.49	0.94	0.17	1.47	2.72	0.32
Со	1.44	0.00	0.11	1.44	0.98	0.23
Ni	1.52	0.04	1.60	1.69	0.20	-0.47
Cu	1.56	0.45	1.70	1.89	0.00	-0.35
Zn	1.56	0.00	0.98	1.64	0.00	1.85
Y	2.04	0.00	-0.10	2.80	0.14	1.09
Zr	2.35	0.00	-0.90	1.91	0.00	0.68
Nb	1.81	0.00	-0.76	1.79	0.00	-0.30
Мо	1.7	1.06	-0.50	1.73	0.88	-0.23
Tc	1.62	1.70	-0.32	1.71	0.82	0.13
Ru	1.58	0.51	-0.51	1.66	0.00	0.26
Rh	1.53	0.00	-0.23	1.60	0.00	0.03
Pd	1.62	0.00	1.88	1.51	0.00	0.24
Ag	1.62	0.00	0.92	2.07	0.00	-0.29
Cd	1.69	0.00	0.04	1.80	0.00	2.10
Hf	1.87	0.00	-1.15	2.36	0.00	0.22
Та	1.79	0.00	-1.07	1.79	0.00	-0.78
W	1.72	0.91	-1.17	1.75	0.00	-0.60
Re	1.64	1.69	-0.70	1.72	0.91	-0.34
Os	1.60	1.00	-0.63	1.70	0.00	-0.07
Ir	1.56	0.00	-0.35	1.63	0.00	-0.33
Pt	1.60	0.00	1.54	1.53	0.10	0.27
Au	1.92	0.10	2.20	1.58	0.00	1.57

Table S5 Bond distance (d_{H-TM} in Å) between adsorbed hydrogen and TM atom, magnetic moment (M in μ_B) for H-adsorbed systems, and the hydrogen adsorption Gibbs free energies (ΔG_{H^*} in eV) for the TM-N-C and TM-C catalysts.

TM-MOF TM-COF System $\mathbf{d}_{\mathbf{H}\text{-}\mathbf{T}\mathbf{M}}$ М ΔG_{H^*} d_{H-TM} Μ ΔG_{H^*} 0.00 Sc 2.43 2.13 2.37 0.00 -0.38 Ti 1.70 0.11 -0.49 1.74 3.09 -0.49 V 0.08 1.65 1.33 1.66 2.11 -0.02 Cr 1.59 2.32 0.28 1.66 3.22 -0.12 Mn 1.52 2.38 0.21 1.64 4.04 -0.14 Fe 1.49 0.96 -0.06 -0.47 1.56 1.78 Со 1.45 0.00-0.03 1.51 1.26 -0.10 Ni 1.49 0.00 0.91 1.48 0.16 -0.09 0.20 Cu 1.55 1.54 1.50 0.00 -0.02 0.01 Zn 2.40 0.00 2.53 1.53 0.71 Y 0.00 2.25 2.63 2.54 0.20 -0.74 Zr 1.67 0.22 -0.61 1.84 0.34 -0.85 Nb 1.76 0.05 -0.86 1.75 0.00 -0.89 Мо 1.69 1.12 -0.41 1.68 1.46 -0.49 Tc 1.24 -0.42 1.62 0.04 -0.80 1.63 Ru 1.58 0.29 -0.43 1.57 0.12 -0.54 0.00 Rh 1.53 0.03 1.61 0.00 -0.20 Pd 1.60 0.00 1.40 1.56 0.04 -0.25 1.61 0.00 1.12 1.62 0.00 0.11 Ag 0.00 3.47 0.00 Cd 1.73 1.64 1.32 Hf 2.25 1.52 -0.45 2.31 0.59 -1.05 Ta 1.76 0.01 -1.21 1.74 0.00 -1.11 W 1.71 0.86 -1.30 1.69 1.26 -0.72 Re 1.65 1.06 -0.73 1.65 1.27 -1.05 0.34 Os 1.60 -0.23 1.60 0.17 -0.69 Ir 1.56 0.00 -0.11 1.63 0.00 -0.87 Pt 1.57 0.00 1.10 1.58 0.00 -0.64 Au 1.65 0.00 1.50 1.57 0.00 -0.21

Table S6 Bond distance (d_{H-TM} in Å) between adsorbed hydrogen and TM atom, magnetization values (M in μ_B) for H-adsorbed systems, and the hydrogen adsorption Gibbs free energies (ΔG_{H^*} in eV) for the TM-MOF and TM-COF catalysts.

		TM-Pc			TM-GDY	
System	d _{H-TM}	Μ	ΔG_{H^*}	d _{H-TM}	Μ	ΔG_{H^*}
Sc	2.71	0.00	2.10	3.74	0.00	1.04
Ti	2.60	0.00	0.59	3.60	0.00	1.10
V	1.64	1.50	0.44	1.68	0.00	-1.98
Cr	1.58	2.62	0.45	1.61	0.00	-0.75
Mn	1.51	2.32	0.53	1.54	1.69	0.06
Fe	1.47	1.02	0.43	1.48	1.06	0.10
Со	1.43	0.00	0.07	1.43	0.00	0.06
Ni	1.65	0.33	1.94	1.44	0.00	1.46
Cu	1.68	0.72	2.08	1.56	0.17	1.93
Zn	1.70	0.11	2.13	1.53	0.00	-0.73
Y	2.82	0.01	0.98	3.98	0.00	-0.26
Zr	1.87	0.02	-0.99	1.92	1.00	0.22
Nb	1.77	0.75	-0.69	1.83	0.00	-2.97
Мо	1.69	1.88	-0.41	1.74	0.00	-2.12
Tc	1.61	1.58	-0.47	1.66	0.57	-1.75
Ru	1.57	0.51	-0.60	1.59	0.58	-1.11
Rh	1.51	0.00	-0.68	1.53	0.00	-0.73
Pd	1.82	0.25	1.99	1.52	0.00	1.19
Ag	1.82	0.59	2.10	1.42	0.00	0.29
Cd	1.7	0.00	2.39	1.41	0.00	-1.70
Hf	1.84	0.00	-1.60	1.89	0.00	-0.56
Та	1.75	0.36	-0.96	1.82	0.00	-2.33
W	1.70	1.49	-0.76	1.75	0.00	-2.54
Re	1.63	1.49	-0.82	1.68	0.42	-2.25
Os	1.59	0.59	-0.83	1.61	0.52	-1.32
Ir	1.55	0.00	-0.79	1.56	0.00	-0.77
Pt	1.62	0.18	1.77	1.54	0.00	0.89
Au	1.97	0.10	2.21	1.51	0.00	-0.53

Table S7 Bond distance $(d_{H-TM} \text{ in } \text{Å})$ between adsorbed hydrogen to TM atom, magnetization values (M in μ_B) for H-adsorbed systems, and the hydrogen adsorption Gibbs free energies (ΔG_{H^*} in eV) for the TM-Pc and TM-GDY catalysts.

		TM-C ₂ N			TM-C ₃ N ₄	
System	d _{H-TM}	М	ΔG_{H^*}	d _{H-TM}	Μ	ΔG_{H^*}
Sc	2.38	0.33	-0.45	2.13	0.00	-0.25
Ti	1.82	2.32	0.05	1.7	0.83	-0.52
\mathbf{V}	1.64	2.08	0.06	1.63	1.91	-0.33
Cr	1.6	2.93	0.45	1.59	2.91	-0.10
Mn	1.64	4.21	0.32	1.66	4.36	-0.22
Fe	1.58	3.27	0.28	1.61	3.52	-0.12
Со	1.51	1.81	0.35	1.53	1.79	0.34
Ni	1.51	1.07	0.50	1.52	1.08	0.02
Cu	1.50	0.00	0.58	1.50	0.00	-0.32
Zn	1.53	0.00	-0.22	1.52	0.00	-1.00
Y	2.59	0.06	0.32	1.95	0.00	-0.64
Zr	1.81	0.21	-0.58	1.83	0.00	-0.97
Nb	1.72	0.00	-0.57	1.74	1.15	-0.73
Мо	1.67	1.71	-0.37	1.66	0.26	-0.53
Tc	1.60	1.41	-0.51	1.61	0.99	-0.54
Ru	1.56	0.00	-0.65	1.56	0.10	-0.80
Rh	1.54	0.00	0.14	1.52	0.00	-0.61
Pd	1.53	0.00	0.83	1.54	0.00	0.05
Ag	1.64	0.00	1.24	1.62	0.00	-0.11
Cd	1.72	0.00	0.21	1.71	0.00	1.05
Hf	1.79	0.13	-0.80	1.8	0.00	-1.18
Та	1.72	0.00	-0.86	1.73	0.80	-0.99
W	1.68	1.15	-0.76	1.67	0.00	-0.82
Re	1.63	1.51	-0.92	1.61	0.00	-1.32
Os	1.59	0.00	-0.79	1.58	0.02	-0.97
Ir	1.58	0.00	-0.35	1.61	0.00	-0.64
Pt	1.56	0.00	-0.47	1.57	0.00	-1.44
Au	1.57	0.00	0.01	1.57	0.00	-1.90

Table S8 Bond distance (d_{H-TM} in Å) between adsorbed hydrogen and TM atom, magnetization values (M in μ_B) for H-adsorbed systems, and the hydrogen adsorption Gibbs free energies (ΔG_{H^*} in eV) for the TM-C₂N and TM-C₃N₄ catalysts.

		ΔG_{H}^{*} (eV	V)	
ТМ	This work	Ref. 1	Ref. 2	Ref. 3
Sc	0.28	-0.34	-0.28	-0.19
Ti	-0.75	-0.53	-0.53	-0.50
V	0.09	-0.13	-0.15	-0.27
Cr	0.24	0.32	0.28	0.31
Mn	0.35	0.53	0.39	0.43
Fe	0.17	0.44	0.28	0.25
Со	0.11	0.32	0.16	0.15
Ni	1.60	1.61	1.61	1.59
Cu	1.70	1.31	1.72	1.68
Zn	0.98	1.15	0.85	0.76
Y	-0.10	-0.22	-0.12	Not given
Zr	-0.9	-0.90	-0.90	-0.90
Nb	-0.76	-0.74	-0.89	-0.76
Мо	-0.50	-0.37	-0.44	-0.91
Tc	-0.32	-0.36	-0.46	-0.46
Ru	-0.51	-0.43	-0.56	-0.56
Rh	-0.23	-0.07	-0.26	-0.17
Pd	1.88	1.57	1.85	1.84
Ag	0.92	0.36	0.82	0.73
Cd	0.04	-0.06	0.02	-0.06
Hf	-1.15	-1.09	-1.13	-1.04
Та	-1.07	-1.00	-1.08	-1.08
W	-1.17	-0.82	-0.93	-1.45
Re	-0.7	-0.83	-0.8	-0.91
Os	-0.63	-0.66	-0.7	-0.73
Ir	-0.35	-0.21	-0.37	-0.30
Pt	1.54	1.68	1.51	1.49
Au	2.20	1.71	2.16	2.24

Table S9 The comparison in the values of ΔG_{H}^{*} on TM-N-C between our DFT-calculation results and previous DFT-calculation results.

Feature	Description				
М	Atomic mass				
R _{COV}	Covalent radius				
Ζ	Atomic number				
N _P	Period number				
N_G	Group number				
R	Atomic radius of the TM atom				
χ	Pauling electronegativity				
I_1	First ionization potential				
I_2	Second ionization potential				
V _{en}	Valance electrons				
e _d	Electrons number of d orbital				
c (TM)	The d-band center of the corresponding pure metal surface of TM				
$\mathcal{E}_{d}(1\mathbf{W}\mathbf{I})$	atom				
H_{xf}	Enthalpy of hydride formation				
	Average distance between TM atom and the coordination atoms				
~	The product of Pauling electronegativity of TM atom and bond length				
χ	between TM and coordination atoms				
	The number of coordination atoms. ($N_c = 4$ for N-C, C, Pc, MOF, $N_c =$				
	3 for COF, $N_c = 4/6$ for C_3N_4 , C_2N , and $N_c = 6$ for GDY supports.				
	Though for C ₃ N ₄ and C ₂ N supports, the results of RDF indicated that				
N	the coordination atoms may be 2.02 or 6, Weighing the computational				
IN _c	cost (it is difficult to perform ab initio molecular dynamics for all				
	systems) and considering the results of CDD, the charge transferring				
	of TM to 4N/6N were observed, finally we adopted the $N_c = 4/6$ for				
	C_2N and C_3N_4 systems.)				
Z_{c}	Atomic number of coordination atoms				
I_c	First ionization potential of coordination atoms				
ТТ	The difference in first ionization potential between TM and				
$I_1 - I_c$	coordination atoms				
Xc	The Pauling electronegativity of coordination atoms				
	The difference in Pauling electronegativity of metal atoms and				
χ тм - χχ	coordination atoms				
ϵ_{d}	The d-band center of the metal in system				
θ_d	Electrons number of unfilled d orbital				
cm_1 to cm_{231}	Coulomb matrix elements based on DFT optimized geometries				

Table S10 The selected input features obtained from the Mendeleev's periodic table

 and simple DFT calculation.

Table S11 The reaction free energies (eV) of elementary step for OER on TM- C_3N_4 , TM- C_2N , TM-COF, TM-MOF, TM-Pc, TM-N-C and TM-C (TM = Cr, Mn, Fe, Co, Ni, Cu). The value highlighted in red indicates the PDS.

Syste	m	ΔG_1	ΔG_2	ΔG_3	ΔG_4
	Cr	-0.91	0.51	2.66	2.66
	Mn	-0.89	1.4	1.95	2.46
	Fe	-0.64	1.05	1.94	2.57
C_3N_4	Co	-0.56	1.07	2.00	2.41
	Ni	-0.41	1.49	1.65	2.19
	Cu	-0.69	2.24	1.10	2.27
	Cr	-0.34	0.58	2.40	2.28
	Mn	-0.18	1.23	2.08	1.79
	Fe	-0.15	1.19	2.04	1.84
C_2N	Co	0.00	1.12	1.85	1.95
	Ni	0.44	1.57	1.43	1.48
	Cu	0.75	1.94	1.10	1.13
	Cr	-1.00	0.95	2.29	2.68
	Mn	-0.78	0.90	2.45	2.35
COL	Fe	-0.98	0.74	2.65	2.51
COF	Со	-0.35	1.25	1.52	2.50
	Ni	-0.21	1.52	1.65	1.96
	Cu	-0.02	1.92	1.25	1.77
	Cr	0.08	0.05	2.92	1.87
	Mn	0.33	0.67	2.47	1.45
MOE	Fe	0.29	1.08	1.97	1.58
MOF	Co	0.88	1.52	1.39	1.13
	Ni	1.46	1.94	1.05	0.47
	Cu	1.73	2.11	0.78	0.30
	Cr	0.27	0.32	2.83	1.50
	Mn	0.75	0.72	2.56	0.89
Do	Fe	0.90	0.71	2.16	1.15
FC	Co	1.39	1.42	1.44	0.67
	Ni	2.29	2.17	0.52	-0.06
	Cu	2.54	2.23	0.26	-0.11
	Cr	-0.11	-0.01	3.15	1.89
	Mn	0.48	0.45	2.69	1.30
NC	Fe	0.49	0.81	2.11	1.51
IN-C	Со	0.96	1.69	1.23	1.04
	Ni	2.03	2.17	0.62	0.10
	Cu	1.88	2.23	0.71	0.10
<u>с</u>	Cr	-0.98	0.25	3.05	2.60
<u> </u>	Mn	-0.49	0.20	3.04	2.17

	_				
	Fe	0.10	0.14	2.75	1.93
	Co	0.16	0.92	2.05	1.79
	Ni	1.43	1.48	1.56	0.45
	Cu	2.35	2.02	0.61	-0.06
	Cr	-1.88	-0.56	4.07	3.29
	Mn	-0.12	-0.11	3.26	1.89
CDV	Fe	0.32	0.71	2.38	1.51
GDY	Co	1.11	1.08	1.87	0.86
	Ni	-0.69	1.90	0.92	2.79
	Cu	1.97	1.81	1.06	0.08

Table S12 Calculated overpotentials for OER (η^{OER}) and the corresponding PDS on TM-C₃N₄, TM-C₂N, TM-COF, TM-MOF, TM-Pc, TM-N-C and TM-C (TM = Cr, Mn, Fe, Co, Ni, Cu).

System		PDS	$\eta^{ m OER}$ (V)	
	Cr	[§] O* → OOH*	1.43	
	Mn	4 OOH* \rightarrow O ₂	1.23	
CN	Fe	4 OOH* \rightarrow O ₂	1.34	
C_3N_4	Co	4 OOH* \rightarrow O ₂	1.18	
	Ni	4 OOH* \rightarrow O ₂	0.96	
	Cu	4 OOH* \rightarrow O ₂	1.04	
	Cr	[§] O* → OOH*	1.17	
	Mn	[§] O* → OOH*	0.85	
CN	Fe	[§] O* → OOH*	0.81	
C ₂ IN	Со	$^{4}OOH^{*} \rightarrow O_{2}$	0.72	
	Ni	$^{2}OH^{*} \rightarrow O^{*}$	0.34	
	Cu	$^{2}OH^{*} \rightarrow O^{*}$	0.71	
	Cr	4 OOH* \rightarrow O ₂	1.45	
	Mn	[§] O* → OOH*	1.22	
COE	Fe	[§] O* → OOH*	1.42	
COF	Со	$^{4}OOH^{*} \rightarrow O_{2}$	1.27	
	Ni	4 OOH* \rightarrow O ₂	0.73	
	Cu	4 OOH* \rightarrow O ₂	0.69	
	Cr	[§] O* → OOH*	1.69	
	Mn	[§] O* → OOH*	1.24	
MOE	Fe	$^{3}\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}$	0.74	
MOF	Со	$^{2}OH^{*} \rightarrow O^{*}$	0.29	
	Ni	$^{\textcircled{0}}OH^* \rightarrow O^*$	0.71	
	Cu	$^{\textcircled{0}}OH^* \rightarrow O^*$	0.88	
	Cr	[§] O* → OOH*	1.6	
	Mn	$^{\circ}O^* \rightarrow OOH^*$	1.33	
Do	Fe	³ O* → OOH*	0.93	
rc	Со	$^{\circ}O^* \rightarrow OOH^*$	0.21	
	Ni	${}^{\Phi}\mathrm{H}_{2}\mathrm{O} \to \mathrm{OH}^{*}$	1.06	
	Cu	${}^{\Phi}\mathrm{H}_{2}\mathrm{O}\rightarrow\mathrm{OH}^{*}$	1.31	
	Cr	$^{3}O^{*} \rightarrow OOH^{*}$	1.92	
	Mn	$^{\circ}O^* \rightarrow OOH^*$	1.46	
NC	Fe	$^{3}O^{*} \rightarrow OOH^{*}$	0.88	
IN-C	Со	$^{2}\mathrm{OH}^{*} \rightarrow \mathrm{O}^{*}$	0.46	
	Ni	$^{2}\mathrm{OH}^{*} \rightarrow \mathrm{O}^{*}$	0.94	
	Cu	$^{\textcircled{0}}OH^* \rightarrow O^*$	1.00	
C	Cr	³ O* → OOH*	1.82	
C	Mn	[§] O* → OOH*	1.81	

	Fe	$^{\circ}O^* \rightarrow OOH^*$	1.52
	Co	$^{3}O^{*} \rightarrow OOH^{*}$	0.82
	Ni	$^{9}O^* \rightarrow OOH^*$	0.33
	Cu	${}^{\Phi}\mathrm{H}_{2}\mathrm{O} \to \mathrm{OH}^{*}$	1.12
	Cr	[§] O* → OOH*	2.84
	Mn	$^{3}O^{*} \rightarrow OOH^{*}$	2.03
GDY	Fe	$^{9}O^* \rightarrow OOH^*$	1.15
	Co	$^{3}O^{*} \rightarrow OOH^{*}$	0.64
	Ni	4 OOH* \rightarrow O ₂	1.56
	Cu	${}^{\Phi}\mathrm{H}_{2}\mathrm{O} \to \mathrm{OH}^{*}$	0.74

Table S13 Calculated adsorption free energies of intermediate (ΔG_0^* and ΔG_{OOH}^*), and the reaction free energies (ΔG_1 , ΔG_2 , ΔG_3 and ΔG_4 in eV) of elementary step for OER (η^{OER}) on the SAC with 0.44 eV $\leq \Delta G_{OH}^* \leq 1.46$ eV.

Syst	em	$\Delta G_{OH*}(\text{Ref.}^4)$	ΔG_{O^*}	ΔG_{OOH*}	ΔG_1	ΔG_2	ΔG_3	ΔG_4
	Ni	0.44	2.01	3.44	0.44	1.57	1.43	1.48
CN	Cu	0.75	2.69	3.79	0.75	1.94	1.10	1.13
	Rh	0.60	1.81	3.39	0.60	1.21	1.58	1.53
C_2N	Pd	1.04	2.81	3.51	1.04	1.77	0.70	1.41
	Cd	0.55	-1.59	3.83	0.55	2.56	0.72	1.09
	Au	0.91	2.85	3.99	0.91	1.95	1.14	0.93
COF	Ag	0.45	2.78	3.68	0.45	2.33	0.90	1.24
	Co	0.88	2.40	3.79	0.88	1.52	1.39	1.13
	Ni	1.46	3.40	4.45	1.46	1.94	1.05	0.47
	Zn	0.83	3.30	4.06	0.83	2.47	0.50	1.12
MOF	Rh	1.25	2.81	4.20	1.25	1.56	1.34	0.77
	Cd	1.44	2.30	4.39	1.44	0.86	2.09	0.53
	Os	0.49	0.27	3.52	0.49	-0.23	3.25	1.40
	Ir	1.28	2.43	4.20	1.28	1.15	1.77	0.72
	Mn	0.75	1.47	4.03	0.75	0.72	2.56	0.89
	Fe	0.90	1.61	3.77	0.9	0.71	2.16	1.15
Рс	Co	1.39	2.81	4.25	1.39	1.42	1.44	0.67
	Rh	0.91	2.62	3.84	0.91	1.71	1.22	1.08
	Ir	0.96	2.42	3.94	0.96	1.46	1.52	0.98
	Co	1.11	2.19	4.06	1.11	1.08	1.87	0.86
GDY	Rh	0.79	1.91	3.57	0.79	1.11	1.67	1.35
	Ir	0.62	1.77	3.59	0.62	1.15	1.82	1.33
	Mn	0.48	0.93	3.62	0.48	0.45	2.69	1.3
	Fe	0.49	1.30	3.41	0.49	0.81	2.11	1.51
NC	Co	0.96	2.65	3.88	0.96	1.69	1.23	1.04
N-C	Rh	0.96	2.57	3.89	0.96	1.62	1.32	1.03
	Zn	0.91	3.44	4.13	0.91	2.53	0.69	0.79
	Ir	1.01	2.31	3.97	1.01	1.30	1.66	0.95
	Ni	1.43	2.91	4.47	1.43	1.48	1.56	0.45
С	Pd	1.22	2.89	4.27	1.22	1.67	1.38	0.65
	Pt	1.09	2.19	4.23	1.09	1.10	2.04	0.69

System		PDS	$\eta^{ m OER}$
	Ni	$^{2}OH^{*} \rightarrow O^{*}$	0.34
	Cu	$^{2}OH^{*} \rightarrow O^{*}$	0.71
	Rh	^ĝ O* → OOH*	0.35
C_2N	Pd	$^{\textcircled{O}}OH^* \rightarrow O^*$	0.54
	Cd	$^{2}OH^{*} \rightarrow O^{*}$	1.33
	Au	$^{2}OH^{*} \rightarrow O^{*}$	0.72
COF	Ag	$^{2}OH^{*} \rightarrow O^{*}$	1.10
	Со	$^{\textcircled{0}}OH^* \rightarrow O^*$	0.29
	Ni	$^{2}OH^{*} \rightarrow O^{*}$	0.71
	Zn	$^{2}OH^{*} \rightarrow O^{*}$	1.24
MOF	Rh	$^{2}OH^{*} \rightarrow O^{*}$	0.33
	Cd	[§] O* → OOH*	0.86
	Os	$^{\circ}O^* \rightarrow OOH^*$	2.02
	Ir	$^{3}\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}$	0.54
	Mn	[§] O* → OOH*	1.33
	Fe	^ĝ O* → OOH*	0.93
Pc	Со	$^{3}\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}$	0.21
	Rh	$^{2}\mathrm{OH}^{*} \rightarrow \mathrm{O}^{*}$	0.48
	Ir	[§] O* → OOH*	0.29
	Со	[§] O* → OOH*	0.64
GDY	Rh	$^{3}\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}$	0.44
	Ir	[§] O* → OOH*	0.59
	Mn	[§] O* → OOH*	1.46
	Fe	$^{3}\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}$	0.88
NC	Co	$^{2}\mathrm{OH}^{*} \rightarrow \mathrm{O}^{*}$	0.46
N-C	Rh	$^{2}OH^{*} \rightarrow O^{*}$	0.39
	Zn	$^{\textcircled{O}}OH^* \rightarrow O^*$	1.30
	Ir	$^{3}O^{*} \rightarrow OOH^{*}$	0.43
	Ni	[§] O* → OOH*	0.33
С	Pd	$^{2}OH^{*} \rightarrow O^{*}$	0.44
	Pt	$^{\circ}O^* \rightarrow OOH^*$	0.81

Table S14 Calculated PDS and the corresponding overpotentials for OER (η^{OER}) on the SAC with 0.44 eV $\leq \Delta G_{\text{OH}}^* \leq 1.46$ eV.

Systems		$\Delta \mathbf{G}_{\mathbf{OH}}^{*}$ (eV)		ΔG_0^* (e	eV)	$\Delta \mathbf{G}_{\mathbf{OOH}}^{*}$ (eV)	
		This work	Ref. ¹	This work	Ref. ¹	This work	Ref. ¹
	Mn	0.48	0.37	0.93	0.82	3.62	3.53
Fe N-C Rh Zn Ir	Fe	0.49	0.56	1.3	1.17	3.41	3.44
	Co	0.96	0.98	2.65	2.31	3.88	4.08
	Rh	0.96	0.96	2.57	2.37	3.89	3.90
	Zn	0.91	0.56	3.44	3.03	4.13	3.78
	Ir	1.01	1.04	2.31	2.07	3.97	3.97
	Ni	1.43	0.88	2.91	2.23	4.47	3.79
С	Pd	1.22	1.06	2.89	2.4	4.27	4.02
	Pt	1.09	1.01	2.19	1.99	4.23	4.23

Table S15 The comparison in the values of ΔG_{OH}^* , ΔG_O^* and ΔG_{OOH}^* on Mn/Fe/Co/Rh/Zn/Ir-N-C and Ni/Pd/Pt-C between our DFT-calculation results and the previous DFT-calculation results.

Solvent effect

The effect of solvent on η^{OER} , η^{HER} , ΔG_{H}^{*} , ΔG_{O}^{*} , ΔG_{OH}^{*} and ΔG_{OOH}^{*} for the screened systems have been calculated by VASPsol,⁵ a dielectric constant of 80 is set to simulate the water environment. The calculated results of ΔG_{H}^{*} and η^{HER} with and without considering solvation correction have shown in Table S16. For the HER overpotentials, the solvent effect is found to be insignificant, and the η^{HER} for the screened SACs also can satisfy the activity criteria of $|\eta HER| \leq 0.15$ V after considering the solvent effect. In Table S17, we listed the η^{OER} , ΔG_{O}^{*} , ΔG_{OH}^{*} and ΔG_{OOH}^{*} with and without considering solvation correction. Our results indicated that most of the ΔG_{O}^{*} , ΔG_{OH}^{*} and ΔG_{OOH}^{*} decrease by ~0.20 eV after considering solvation correction, however, the values of η^{OER} is not changed significantly by solvation effects, the corrected values are at the range of -0.07 ~ 0.06 V.

System	ΔG	H [*] (eV)	η ^{HER} (V)		
	VASP	VASPsol	VASP	VASPsol	
Co-N-C	0.11	0.15	-0.11	-0.15	
Co-Pc	0.07	0.10	-0.07	-0.10	
V-MOF	0.08	-0.05	-0.08	-0.05	
Fe-MOF	-0.06	0.02	-0.06	-0.15	
Co-MOF	-0.03	0.08	-0.03	-0.08	
Rh-MOF	0.03	0.10	-0.03	-0.10	
Ir-MOF	-0.11	-0.01	-0.11	-0.01	
V-C	-0.09	0.02	-0.09	-0.02	
Tc-C	0.13	0.12	-0.13	-0.12	
Rh-C	0.03	0.04	-0.03	-0.04	
Os-C	-0.07	0.01	-0.07	-0.01	

Table S16 The calculated ΔG_{H}^{*} for Co-N-C, Co-Pc, V/Fe/Co/Rh/Ir-MOF, and V/Tc/Rh/Os-C with (VASPsol) and without (VASP) considering solvation correction.

Table S17 The calculated η^{OER} , ΔG_{O}^* , ΔG_{OH}^* and ΔG_{OOH}^* for Co/Rh/Ir-MOF, Co/Rh/Ir-Pc, Co/Rh-N-C and Ni/Pd-C with (VASPsol) and without (VASP) considering solvation correction.

System	ΔG_{OH}^{*} (eV)		ΔG_0^* (eV)		ΔG_{OOH}^{*} (eV)		η ^{OER} (V)	
	VASP	VASPsol	VASP	VASPsol	VASP	VASPsol	VASP	VASPsol
Co-MOF	0.88	0.70	2.40	2.23	3.79	3.62	0.29	0.29
Rh-MOF	1.25	1.07	2.81	2.57	4.20	3.99	0.33	0.27
Ir-MOF	1.28	1.14	2.43	2.22	4.20	4.04	0.54	0.59
Co-Pc	1.39	1.27	2.81	2.73	4.25	4.13	0.21	0.23
Rh-Pc	0.91	0.66	2.62	2.44	3.84	3.55	0.48	0.55
Ir-Pc	0.96	0.71	2.42	2.20	3.94	3.66	0.29	0.23
Co-N-C	0.96	0.75	2.65	2.38	3.88	3.64	0.46	0.40
Rh-N-C	0.96	0.79	2.57	2.34	3.89	3.68	0.39	0.33
Ni-C	1.43	1.27	2.91	2.78	4.47	4.32	0.33	0.31
Pd-C	1.22	1.06	2.89	2.72	4.27	4.04	0.44	0.43

References

- M. Ha, D. Y. Kim, M. Umer, V. Gladkikh, C. W. Myung and K. S. Kim, *Energ.* & *Environ. Sci.*, 2021, 14, 3455-3468.
- M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand, A. Hajibabaei, A. Abbas, G. Lee and K. S. Kim, *J. Mater. Chem. A*, 2022, **10**, 6679-6689.
- V. Fung, G. Hu, Z. Wu and D.-e. Jiang, J. Phys. Chem. C, 2020, 124, 19571-19578.
- Y. Wang, R. Hu, Y. Li, F. Wang, J. Shang and J. Shui, *Nano Res.*, 2022, 15, 1054-1060.
- 5. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, *J Chem Phys*, 2014, **140**, 084106.