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General method and materials 

Unless specifically mentioned, all chemicals are commercially available and were 

used as received. 1H and 13C NMR spectra were taken on a Bruker AV400 at room 

temperature. High-resolution mass spectrometry (HR-MS) was performed on a 

Thermo ultimate Q-Exactive in positive mode. 13C cross-polarization/magic angle 

spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) experiments were 

performed on a Bruker AVANCE III 400 WB spectrometer operating at 100.62 MHz 

for 13C using a double resonance 4 mm MAS NMR probe and a sample spinning rate 

of 6 kHz. The powder X-ray diffraction measurements were taken on a Bruker D8 

diffractometer using Cu-Kα radiation (λ = 1.5418 Å) at room temperature. 

Low-pressure gas sorption measurements were performed by using Quantachrome 

Instruments Autosorb-iQ with the extra-high pure gases. Brunauer-Emmett-Teller 

(BET) surface area and pore size distribution were calculated from the N2 sorption 

isotherms at 77 K based on the solid density functional theory (QSDFT) model in the 

Quantachrome ASiQwin 2.01 software package. UV-vis diffuse reflectance spectra 

(UV-vis DRS) were recorded at room temperature on an Agilent Cary 7000 

Spectrophotometer. Photoluminescence (PL) spectra were obtained with an Edinburgh 

FLS920 spectrophotometer. The infrared spectra were recorded on a Thermo 

Scientific Nicolet iS10 FT-IR spectrometer as KBr pellets. Temperature-dependent 

photoluminescence spectra were recorded on a HORIBA FluoroMax Plus module 

fluorescence spectrometer. ESR spectra were recorded at room temperature using a 

Bruker A300 spectrometer at 9.8 GHz, X-band, with 100 Hz field modulation. 

Ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy 

(XPS) were performed on Thermo Scientific Escalab 250Xi and K-Alpha. 

Field-emission scanning electron microscopy (FE-SEM) images were obtained on a 

HITACHI S-8010 instrument operating at 10 kV. Transmission electron microscopy 

(TEM) images were obtained on a JEM 2100F operating at 200 kV.  
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Synthesis and Characterizations 

10-phenyl-10H-phenothiazine (PTZ): 

 

Toluene (100 mL) was added to a 250 mL two-necked flask and nitrogen was used to degas it 

for two hours. After the previous step was completed 10H-phenothiazine (4.98 g, 25.0 mmol), 

iodobenzene (6.12 g, 30.0 mmol), potassium t-butoxide (4.20 g, 37.5 mmol), Pd(OAc)2 (280 mg, 

1.3 mmol), and tert-butyl phosphate (P(t-Bu)3) (1.26 g, 6.3 mmol) was added to the reaction flask, 

and evacuated and filled with nitrogen three times. The mixture was stirred and then heated at 

110 °C for 24 h. After that, the mixture was poured into ice water and then was extracted with 

DCM; the combined organic layers were dried over anhydrous Na2SO4 and filtered. The solvent 

was removed under rotary evaporation. The product was purified by column chromatography over 

a silica gel column using petroleum ether-ethyl acetate (v/v, 60/1) to give a white solid (5.53 g, 

20.1 mmol, yield: 80%). 1H NMR (400 MHz, d6-DMSO) δ 7.67 (t, J = 7.6 Hz, 2H), 7.54 (t, J = 

7.3 Hz, 1H), 7.42 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.4 Hz, 2H), 6.89 (dt, J = 29.0, 7.3 Hz, 4H), 

6.16 (d, J = 8.1 Hz, 2H). 

 

Fig. S1. 1H NMR of compound PTZ (400 MHz, d6-DMSO). 
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3,7-dibromo-10-(4-bromophenyl)-10H-phenothiazine (PTZ-3Br): 

 

To a mixture of 10-phenyl-10H-phenothiazine (3.99 g, 14.5 mmol) in DCM (80 mL), 

N-bromosuccinimide (8.53 g, 47.9 mmol) was added into the above mixture in batches. The 

mixture was stirred at room temperature for 12 h. After that, the mixture was poured into ice water 

and extracted with DCM and the combined organic extracts were dried over anhydrous Na2SO4 

and concentrated. The crude product was purified by column chromatography over a silica gel 

column using petroleum ether and dichloromethane (v/v, 10/1) to give a white solid (6.38 g, 12.5 

mmol, yield: 86%). 1H NMR (400 MHz, d6-DMSO) δ 7.86 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.3 Hz, 

2H), 7.31 (s, 2H), 7.15 – 7.04 (m, 2H), 6.05 (d, J = 8.8 Hz, 2H). 

 

Fig. S2 1H NMR of compound PTZ-3Br (400 MHz, d6-DMSO). 
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10-(4-formylphenyl)-10H-phenothiazine-3,7-dicarbaldehyde (PTZ-CHO): 

 

In a 250 mL two-neck flask, the suspension of 3,7-dibromo-10-(4-bromophenyl)-10H- 

phenothiazine (3.53 g, 6.9 mmol) in dry THF (100 ml) was cooled down to -78 °C under N2 

condition and then the solution of n-BuLi (28 mL, 69.9 mmol, 2.5 M in hexane) was added. The 

mixture was stirred at -78 °C for 1 h and then dry DMF (4.47 g, 62.1 mmol) was added. The 

reaction was at the same temperature for one hour, and restoration of room temperature. The 

reaction system was extracted with ethyl acetate and an appropriate amount of hydrochloric acid 

was added. Wash the organic phase with saturated salt water to pH = 7. The combined organic 

extracts were dried over anhydrous Na2SO4 and concentrated to obtain an orange solid. The crude 

product was purified by column chromatography over a silica gel column using dichloromethane 

and ethyl acetate (v/v, 20/1) to give an orange solid (1.73 g, 4.8 mmol, yield: 70%). 1H NMR (400 

MHz, d6-DMSO) δ 10.17 (s, 1H), 9.75 (s, 2H), 8.26 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 

7.60 (s, 2H), 7.46 (d, J = 8.6 Hz, 2H), 6.22 (d, J = 8.5 Hz, 2H). 13C NMR (CDCl3, 101 MHz) δ 

190.80, 189.72, 146.99, 144.81, 136.91, 132.83, 132.49, 131.42, 130.04, 127.88, 120.66, 116.20, 

EI-HRMS: m/z calcd for C21H13NO3S: 359.0616, found: 359.0608 [M]+. 
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Fig. S3 1H NMR of compound PTZ-CHO (400 MHz, d6-DMSO).  

 

 

Fig. S4. 13C NMR of compound PTZ-CHO (101 MHz, CDCl3). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5. EI-HRMS sp

S‐7 

pectrum of coompound PTZ-CHO. 
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Synthesis of PTZ-TTA-COF  

 

A mixture of TTA-NH2 (21 mg, 0.06 mmol), PTZ-CHO (21 mg, 0.056 mmol), acetic acid (6 M, 

0.1 mL) in o-dichlorobenzene (o-DCB)/diphenyl ether (DPE) (0.3 mL/0.7 mL) in a Pyrex tube (5 

mL) was first sonicated for 30 minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 

by three times of freeze-pump-thaw cycle. The tube was sealed off under a flame and then heated 

at 120 °C for 72 h. After cooling to room temperature, the red precipitate was washed several 

times until the upper layer is colorless with THF, MeOH, and acetone, respectively. The resulting 

powder was subjected to Soxhlet extraction with THF for 12 h, and then dried under vacuum at 

60 °C overnight to obtain a bright red solid (80%). 
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Table S1. Optimization of synthetic conditions for PTZ-TTA-COF. 

 

 

Entry Solvents T (°C) Crystallinity Yield 

1 Mesitylene/Dioxane/6M HAc = 0.3/0.7/0.1 120 low low 

2 Mesitylene/Dioxane/6M HAc = 0.5/0.5/0.1 120 low low 

3 Mesitylene/Dioxane/6M HAc = 0.7/0.3/0.1 120 No low 

4 Mesitylene/Butanol/6M HAc = 0.3/0.7/0.1 120 No No 

5 Mesitylene/Butanol/6M HAc = 0.5/0.5/0.1 120 No No 

6 Mesitylene/Butanol/6M HAc = 0.7/0.3/0.1 120 No No 

7 Mesitylene/Butanol/6M HAc = 0.7/0.3/0.1 80 Moderate low 

8 Mesitylene/Butanol/HAc = 0.3/0.7/0.1 80 low low 

9 Mesitylene/Butanol/HAc = 0.7/0.3/0.1 80 High low 

10 Mesitylene/DPE/6M HAc = 0.7/0.3/0.1 120 High High 

11 Mesitylene/DPE/6M HAc = 0.3/0.7/0.1 120 High High 

12 Mesitylene/DPE/6M HAc = 0.7/0.3/0.1 150 High High 

13 Mesitylene/DPE/6M HAc = 0.3/0.7/0.1 150 High High 

14 Mesitylene/DPE/12M HAc = 0.7/0.3/0.1 120 High High 

15 Mesitylene/DPE/12M HAc = 0.5/0.5/0.1 120 High High 

16 Mesitylene/DPE/12M HAc = 0.3/0.7/0.1 120 High High 

17 o-DCB/DPE/6M HAc = 0.7/0.3/0.1 120 High High 

18 o-DCB/DPE/6M HAc = 0.5/0.5/0.1 120 High High 

19 o-DCB/DPE/6M HAc = 0.3/0.7/0.1 120 Highest High 

20 o-DCB/DPE/12M HAc = 0.7/0.3/0.1 150 Highest High 

21 Butanol/DPE/12M HAc = 0.7/0.3/0.1 120 Highest High 

22 CH3CN/HAc = 1/0.05 RT No Moderate 

23 CH3CN/12M HAc = 1/0.1 RT No Moderate 

24 Mesitylene/DPE/6M HAc = 0.5/0.5/0.1 RT Moderate Moderate 

25 Mesitylene/DPE/12M HAc = 0.5/0.5/0.05 RT High Moderate 
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Fig. S6 PXRD patterns of representative PTZ-TTA-COF samples in Table S1. 
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Fig. S7 The torsion angle comparison of TTA-NH2 and TBA-NH2 amine building blocks as well 

as the chemical structures of corresponding COFs. The PTZ-TBA-COF was synthesized by the 

similar procedure as PTZ-TTA-COF. 

 

 

  The torsion angle data was taken from the literature report.S1 It can be found that the three 

phenyl rings connected to the central triazine core in TTA-NH2 are almost in the same plane, 

whereas for TBA-NH2, the central triphenyl cores are not in the same plane due to the steric 

interactions among the ortho hydrogens. As a consequence, the resulting PTZ-TTA-COF exhibited 

a much better crystallinity than that of PTZ-TBA-COF under the assistance of TTA-NH2 with a 
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Synthesis of PTZ-TBA-COF 

The PTZ-TBA-COF was synthesized by the similar procedure as PTZ-TTA-COF. Specifically, 

a mixture of TBA-NH2 (21 mg, 0.06 mmol), PTZ-CHO (21 mg, 0.056 mmol), acetic acid (6 M, 

0.1 mL) in o-dichlorobenzene (o-DCB)/diphenyl ether (DPE) (0.5 mL/0.5 mL) in a Pyrex tube (5 

mL) was first sonicated for 30 minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 

by three times of freeze-pump-thaw cycle. The tube was sealed off under a flame and then heated 

at 120 °C for 72 h. After cooling to room temperature, the orange precipitate was washed several 

times until the upper layer is colorless with THF, MeOH, and acetone, respectively. The resulting 

powder was subjected to Soxhlet extraction with THF for 12 h, and then dried under vacuum at 

60 °C overnight to obtain orange solid (76%). 

 

 

Fig. S11 FT-IR spectra of PTZ-CHO, TBA-NH2 and PTZ-TBA-COF. It can be observed that 

stretching bands of CHO and NH2 in monomers are almost disappeared in COF sample, while a 

characteristic signal of C=N stretching peak at 1623 cm-1 is detected in PTZ-TBA-COF sample. 

This FT-IR comparison confirmed the formation of imine-bridged framework structure with the 

high polycondensation degree of amine and aldehyde precursors in PTZ-TBA-COF. 
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Fig. S12 Nitrogen sorption isotherm at 77K (left) and BET specific surface area plot (right) for 

PTZ-TBA-COF, confirming its good porosity.  

 

 

Fig.S13 Comparison of PTZ-TTA-COF and PTZ-TBA-COF for photocatalyzing oxidative 

coupling of four benzylamines into imines at room temperature under air. Reaction conditions: 

amine (0.1 mmol), COF photocatalyst (2 mg), CD3CN (1 mL), blue LEDs (λmax = 450 nm, 3 W x 

4), 1 h. The yields were determined by 1H NMR. 

 

As for the two COFs, the donor parts are the same PTZ unit, while the TBA unit is a weaker 

acceptor in relative to TTA unit. As a result, the stronger D-A interaction is expected for 

PTZ-TTA-COF in comparison to PTZ-TBA-COF. Thus, PTZ-TTA-COF exhibited higher 

photocatalytic activities than PTZ-TBA-COF under the same reaction conditions 
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Synthesis of TPA-TTA-COF 

 

  The control TPA-TTA-COF with the similar hexagonal reticular structure but small D-A 

contrast was prepared according to the previous reports and its PXRD pattern was consistent with 

the reported one.S2-S4 A mixture of TTA-NH2 (21 mg, 0.06 mmol), TPA-CHO (20 mg, 0.06 mmol), 

and acetic acid (6 M, 0.1 mL) in 1,4-dioxane/o-dichlorobenzene (o-DCB) (0.5 mL/0.5 mL) in a 

Pyrex tube (5 mL) was first sonicated for 30 minutes and then flash frozen at 77 K (liquid N2 bath) 

and degassed by three times of freeze-pump-thaw cycles. The tube was sealed off under a flame 

and then heated at 120 °C for 72 h. After that cooling to room temperature, the yellow precipitate 

was washed several times with THF, MeOH, and acetone, respectively, and then dried under 

vacuum at 120 °C overnight to obtain a yellow solid (82%).  

 

 

Fig. S14 FT-IR spectra of TPA-CHO, TTA-NH2 and TPA-TTA-COF.  
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Fig. S15 The comparison for simulated and as-synthesized PXRD patterns of TPA-TTA-COF, 

identifying its AA stacking mode and crystalline structure.   

 

 

Fig. S16 XPS spectra of TPA-TTA-COF. No metal species was detected in the XPS survey 

spectra. 
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Fig. S17 Nitrogen sorption isotherm at 77K (left) and BET specific surface area plot (right) for 

TPA-TTA-COF. The BET surface area of TPA-TTA-COF is higher than that of PTZ-TTA-COF, 

which should be ascribed to the better crystallinity of TPA-TTA-COF than PTZ-TTA-COF. 

 

Fig. S18 The PXRD comparison of PTZ-TTA-COF with TPA-TTA-COF in the same scale. It can 

be found that TPA-TTA-COF exhibited some better crystallinity than that of PTZ-TTA-COF. This 

phenomenon should be attributed to the flexible butterfly-shaped configuration of PTZ unit, thus, 

impeding the facile crystallization of PTZ-based COF to some extent. 
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Fig. S22 FT-IR spectra of PTZ-TTA-COF and TPA-TTA-COF as-synthesized and after 

photocatalysis, indicating their chemical structural stability after photocatalysis.  

 

 

 

Fig. S23 XPS spectra of PTZ-TTA-COF. No metal species was detected in the XPS survey 

spectra.  
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Table S2. Atomistic coordinates for the refined unit cell parameters of PTZ-TTA-COF (AA 

stacking mode) optimized via Pawley refinement.  

Molecular modeling of PTZ-TTA-COF was generated with the BIOVIA Materials Studio 7.0. 

Pawley refinement was carried out using Reflex, a software package for crystal determination 

from PXRD pattern. Unit cell dimension was set to the theoretical parameters. The Pawley 

refinement was performed to optimize the lattice parameters iteratively until the Rwp value 

converges and the overlay of the observed with refined profiles shows good agreement. The lattice 

models (e.g., cell parameters, atomic positions, and total energies) were then fully optimized using 

MS Forcite molecular dynamics module (universal force fields, Ewald summations) method. 

 

Space-group P 1 - triclinic 

a = 23.4920 Å, b = 23.2820 Å, c = 3.6845 Å 

α = 92.2280°, β = 103.0540°, γ = 120.2430° 

V = 1667.81 Å3 Rwp = 7.61%, Rp = 5.91% 

Atom x/a y/b z/c Atom x/a y/b z/c 

N1 0.5824 0.6841 0.6357 C39 0.0133 0.6143 0.6311 

C2 0.6119 0.6437 0.6202 C40 -0.0251 0.5454 0.6185 

C3 0.6838 0.6753 0.7074 C41 -0.0936 0.5146 0.6135 

C4 0.7142 0.6372 0.697 C42 -0.1246 0.5525 0.6219 

C5 0.6731 0.5669 0.6018 C43 -0.0861 0.6216 0.6353 

C6 0.6011 0.5352 0.5161 C44 -0.0176 0.6524 0.6402 

C7 0.5706 0.5733 0.524 C45 0.7053 0.5267 0.5965 

C8 0.5685 1.1071 0.6859 C46 -0.1972 0.52 0.6126 

C9 0.525 1.0349 0.6642 N47 0.7726 0.5566 0.6133 

C10 0.4535 0.9995 0.4628 C48 0.6982 1.4226 0.584 

C11 0.4136 0.9307 0.4433 N49 0.7655 1.453 0.6007 

C12 0.4436 0.8957 0.6254 N50 0.6682 1.4596 0.5795 

C13 0.5161 0.9318 0.8221 H51 0.7179 0.7324 0.7875 

C14 0.5559 1.0008 0.8414 H52 0.7728 0.6632 0.7662 
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N15 0.401 0.8243 0.607 H53 0.567 0.478 0.4396 

C16 0.4311 0.7837 0.5824 H54 0.5119 0.547 0.4519 

C17 0.5024 0.8093 0.7744 H55 0.6275 1.1335 0.8149 

S18 0.562 0.8934 1.0602 H56 0.4279 1.0268 0.3146 

C19 0.3898 0.7176 0.3621 H57 0.3554 0.9016 0.2768 

C20 0.4175 0.6774 0.3399 H58 0.6142 1.0292 1.0048 

C21 0.4877 0.7028 0.5353 H59 0.3323 0.6957 0.1966 

C22 0.5299 0.7688 0.7514 H60 0.3827 0.6238 0.1619 

C23 0.516 0.66 0.5083 H61 0.5874 0.7894 0.9101 

C24 0.3299 0.7941 0.6124 H62 0.4783 0.6043 0.3718 

C25 0.289 0.7252 0.6063 H63 0.311 0.6916 0.5949 

C26 0.2214 0.6964 0.6139 H64 0.1894 0.6404 0.606 

C27 0.1929 0.7362 0.631 H65 0.21 0.8376 0.6589 

C28 0.2327 0.8047 0.6429 H66 0.3316 0.8894 0.6481 

C29 0.3003 0.8331 0.6353 H67 0.0996 0.7408 0.6446 

N30 0.0831 0.6442 0.6298 H68 0.4892 1.2209 0.4125 

N31 0.5412 1.142 0.5605 H69 0.5583 1.3453 0.4254 

C32 0.1219 0.7074 0.6356 H70 0.7505 1.3412 0.726 

C33 0.5816 1.2122 0.5686 H71 0.6819 1.2173 0.722 

C34 0.548 1.2478 0.4853 H72 -0.0005 0.514 0.6121 

C35 0.586 1.3164 0.4907 H73 -0.1247 0.4584 0.6026 

C36 0.6582 1.3502 0.576 H74 -0.1106 0.653 0.6422 

C37 0.6919 1.3144 0.6572 H75 0.0133 0.7086 0.6516 

C38 0.654 1.2459 0.6544     

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

F

Fig

Fig. S25 UV-

g. S24 TEM im

Vis spectra o

mages of PTZ

f (a) PTZ-TT

S‐23 

Z-TTA-COF

TA-COF, (b) T

monomers.

 

 

 

 

 

with increasi

TPA-TTA-CO

ng amplificat

OF, and their 

tion.  

correspondin

 

 

ng 



S‐24 
 

Computational Methods: 

All the density functional theory (DFT) calculations are carried out in the Vienna 

Ab-initio Simulation Package (VASP),S5 and VASPKITS6 is used to post-process the 

data calculated by VASP. The generalized gradient approximation (GGA) is used with 

Perdew-Burke-Ernzerhof (PBE)S7,S8 exchange-correlation functional. The Projector 

augmented-wave (PAW) method is used to deal with the core electrons, and the 

valence electrons are described by a plane wave basis set with a cutoff energy of 450 

eV. The adsorption energy and electronic properties are calculated by k-point grid 

(7×1×1) The convergence criteria of force and energy are set to 0.03eVÅ-1 and 10-5eV, 

respectively. In order to obtain a better description of band gap, HSE06 hybrid 

functionalS9 was used to calculated band structure. The path connected high-symmetry 

points in Brillouin zone were selected as Γ, M, K and Γpoints and 60 K-points 

were sampled between each high-symmetry points. Density of states was also 

evaluated at HSE06 level with a denser Brillouin sampling of 12×12×1. 
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Table S3. The comparison of photocatalytic oxidative cyclization of five thioamides to 

1,2,4-thiadiazoles by PTZ-TTA-COF and TPA-TTA-COF.a 

 

Entry Substrate Product Time (h) Yieldb (%)

1 

  

2 
72c 

33d 

2 

  

2 
61c 

37d 

3 

 

2 

72c 

34d 

4 

  

2 
60c 

25d 

5 

  

2 
67c 

26d 

aReaction conditions: thioamide (0.05 mmol), COF (2 mg), CH3CN (1 mL), irradiation with blue LEDs (λmax = 

450 nm, 3 W × 4), 2 h. bdetermined by 1H NMR analysis. cby PTZ-TTA-COF. dby TPA-TTA-COF. 

 

 

Fig. S31 EPR spectra of a mixture of PTZ-TTA-COF with TEMP upon light irradiation and in the 

dark (left) as well as DMPO upon light irradiation and in the dark (right). 
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photocatalyst in the inner solution cannot be efficiently excited. Additionally, too high 

concentration of photocatalyst often results in the self-quenching of exciton, thus, decreasing its 

photocatalytic activity. Based on these results, the suitable concentration of COF was determined 

to be 2 mg/mL in acetonitrile.  

Second, when the reaction was conducted in pure O2 atmosphere (Entry 4, Table S4), the rate is 

obviously accelerated in comparison to air atmosphere, whereas only trace product was detected in 

N2 atmosphere. This result indicated that oxygen played a critical role in this photocatalytic 

process. Besides, we also employed quenching experiments and EPR measurements to identify the 

reactive oxygen species (ROS) of 1O2 and O2
•−, which were generated by the electron and energy 

transfer process from excited COF photocatalyst to O2 molecules.  

Third, we further investigated the reaction under the different concentration of benzylamine. It 

was found that when the substrate concentration was increased from 0.1 mmol to 0.2 and 0.3 

mmol (Entry 5 and 6, Table S4), the product yield was decreased to be 44% and 29%, respectively. 

This result demonstrated that the conversion of benzylamine was determined by the generation 

rate of ROS in the mixture solution.  

 

Based on these above results and the proposed mechanism, it is reasonable to speculate that the 

limiting step in this photocatalytic reaction should be the ROS generation produced by the electron 

and energy transfer process from photo excited PTZ-TTA-COF to O2 molecules.   
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Table S5. Photocatalytic oxidative coupling of various amines by PTZ-TTA-COFa 

 

Entry Substrate Product Time (h) Yieldb (%) 

1 
  

1 92 

2 

  

1 96 

3 

  
1 99 

4 
  

1 96 

5 

  

2 97 

6 
  

1 91 

7 
  

1 95 

8 
  

1 95 

9 
  

1 75 

10 
  

1 84 

11 
  

2 91 

NH2

NH2

N

N

CF3F3C
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12 

 
 

2 99 

13 
  

2 99 

14 
  

2 85 

a Reaction conditions: benzylamines (0.1 mmol), PTZ-TTA-COF (2 mg), CD3CN (1 mL), irradiation with blue 

LEDs (λmax = 450 nm, 3 W × 4),, 1 h. bDetermined by 1H NMR analysis. 
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Fig. S34 Recycling of PTZ-TTA-COF for the photocatalyzed aerobic oxidative coupling of 

benzylamine to imine. 

 

Fig. S35 Solid-state 13C NMR of PTZ-TTA-COF as-synthesized (orange) and after photocatalysis 

(blue). 
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Fig. S36 Nitrogen sorption isotherms for PTZ-TTA-COF as-synthesized (left) and after 

photocatalysis (right). 
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