Supplementary materials for

Self-assembly of heterogeneous microreactor with carbon dots embedded in Ti-MOF derived $ZnIn_2S_4/TiO_2$ microcapsule for efficient CO₂ photoreduction

Dongxue Wu^a, Qian Liang^{a,*}, Honglin Si^b, Xiong Yan^b, Hui Huang^b, Zhongyu Li^{a,*} and Zhenhui Kang^{b,c,d,*}

^aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. E-mail: qianliang@cczu.edu.cn; zhongyuli@mail.tsinghua.edu.cn

^bInstitute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China. E-mail: zhkang@suda.edu.cn

^cMacao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China. E-mail: zhkang@must.edu.mo

^d Institute of Advanced Materials, Northeast Normal University, Changchun, 130024, China. E-mail: kangzh@nenu.edu.cn

Supplementary Text

1. Experimental section

1.1 Material

All reagents were commercial materials of reagent grade and used without further purification. Zinc chloride (ZnCl₂), thioacetamide (TAA), methanol, ethanol, indium chloride tetrahydrate (InCl₃·4H₂O), N, N-dimethylformamide (DMF), tetrabutyl titanate Ti(OC₄H₉)₄ and 2-Aminoterephthalic acid (NH₂-BDC) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

1.2 Synthesis.

1.2.1 Synthesis of CDs.

The CDs were prepared by a typical electrochemical method [1]. In general, two graphite rods after ultrasonic cleaning were inserted into deionized (DI) water as anode and cathode respectively, and then a 30 V bias was applied between the two electrodes using a direct current power supply. Continue stirring until the stone grinding rod was gradually corroded and the colorless electrolyte turned into a dark solution. The obtained dark solution was filtered and collected by centrifugation, and then freeze-dried to obtain CDs powder. Finally, the CDs powder was dispersed in DI water (0.7 mg mL⁻¹).

1.2.2 Synthesis of NH₂-MIL-125(Ti)

NH₂-MIL-125(Ti) was prepared according to the previous literature [2]. In a typical synthesis, Ti(OC₄H₉)₄ (0.52 mL, 1.5 mmol) and NH₂-H₂BDC (1.087 g, 6.0 mmol) were added into a mixed solution containing DMF and MeOH (24.3 mL: 2.7 mL). And the mixture solution was further stirred for 30 min at room temperature to form a uniform and stable solution. Subsequently, the solution was sealed in a 100 mL Teflon-lined autoclave and maintained at 150°C for 24 h. The resulting mixture was cooled to room temperature and a yellow powder was obtained by centrifugation, and washed using DMF and methanol for several times to remove unreacted organic linkers, Finally, the product was dried at 60°C under vacuum for 12 h.

1.3 The experimental method of transient photovoltage (TPV).

The TPV measurements were conducted on films samples (1.5 cm × 4 cm) deposited on indium-tin oxide (ITO) glass substrates at room temperature. A 10 mg mL⁻¹ sample aqueous solution was dripped on the ITO substrate, and then dried in air to obtain the films samples. The working electrode (ITO glass modified with samples) and the counter electrode (Pt wire) were wetted with N₂ or O₂-saturated acetonitrile and N₂saturated acetonitrile/water aqueous (0.5 vol%). Meanwhile, we also measured the powder samples, which were covered on the Pt network (1 cm × 1 cm). The samples were excited by a third-harmonic Nd: YAG laser (Polaris II, New Wave Research, Inc.) with a laser radiation pulse (wavelength 355 nm, pulse width 5 ns).

1.4 Characterizations

The crystal structures and crystallinity of microreactors were analyzed by powder Xray diffractometer (Bruker D8 Advance) with Cu Ka radiation. The morphologies and microstructures of microreactors were measured on field-emission scanning electron microscopy (FE-SEM, Hitachi) as well as transmission electron microscopy (TEM, JEOL 2100). Fourier transform infrared spectroscopy (FT-IR) spectra were performed on the EQUI-NOX55 (Germany Bruker). N2 adsorption-desorption curves were obtained on Micromeritics ASAP 2000 to analyze porous structure. The optical properties of microreactors were performed on UV-vis diffuse reflectance spectroscopy (DRS) with a Shimadzu UV-3600 UV-vis spectrophotometer. The steady-state photoluminescence (PL) spectra were recorded on a Cary Eclipse fluorescence spectrophotometer. Time-resolved photoluminescence (TR-PL) decay spectra were measured on an FLS1000 at an excitation wavelength of 365 nm. The chemical composition and state were investigated by X-ray photoelectron spectra (XPS) applied on a Thermo ESCALAB 250 spectrometer with an Al Ka X ray source. In-situ FT-IR spectra were acquired by the Bruker INVENIO R FT-IR spectrometer equipped with an *in situ* diffuse reflectance cell (Harrick) to study the CO₂ photoreduction process.

1.5 Photocatalytic CO₂ reduction

The photocatalytic CO_2 reduction was tested in a 200 mL Pyrex glass reactor, and 10 mg photocatalysts were dispersed in H₂O/ethyl acetate (EA). After complete evacuation of the reaction system, high-purity CO_2 gas was injected into the airtight system. The

reaction system was cooled by circulating water to weaken the heating effect and decrease the solvent evaporation. A 300 W xenon lamp was assembled with the AM 1.5G filter simulated solar illumination (Beijing China Education Aulight Co., Ltd.). The illumination distance was settled on 6 cm from the sample. The gaseous products were analyzed by gas chromatography (GC-7860 Plus) equipped with FID. The cycling experiments of as-prepared samples were conducted as follows: after the reaction, the photocatalyst was separated from the solution, rinsed with deionized water, and dried at 60°C for the next run.

1.6 Photoelectrochemical measurement

Photoelectrochemical properties of catalysts were measured on a CHI660D electrochemical analyzer with the conventional three-electrode cell, including platinum wire as the counter electrode, Ag/AgCl as the reference electrode, and working electrode. 0.5 M Na₂SO₄ solution was used as the electrolyte. The working electrode was prepared as follows: 2 mg of as-prepared sample was dispersed in 2 mL of ethanol with 75 μ L of Nafion. Then, the above suspension (100 μ L) was dropped onto the FTO glass and then dried at 60°C. Under a 300 W xenon lamp with AM 1.5G filter, the electrochemical impedance spectroscopy (EIS) and transient photocurrent response were obtained. The Mott-Schottky curves of samples were obtained by varying the frequencies.

Supplementary Figures

Fig. S1 (a) XRD pattern, (b) Raman and FT-IR spectra of CDs.

Fig. S2 HRTEM image of CDs.

Fig. S3 SEM images of (a) $ZnIn_2S_4$, (b) NH_2 -MIL-125 and (c) $ZIS(60)/TiO_2$. TEM images of (d) $ZnIn_2S_4$, (e) NH_2 -MIL-125 and (f) $ZIS(60)/TiO_2$. (g) SEM image, (h) HRTEM image and (i) EDS pattern of m-TiO₂.

Fig. S4 (a, b) SEM images and (c) EDS mapping images of m-TiO₂.

Fig. S5 (a, b) SEM images and (c) EDS pattern of 5-CDs/ZIS/TiO₂.

Fig. S6 XRD patterns of pristine NH_2 -MIL-125, TiO_2 /MIL-125 and m- TiO_2 composites with the weight ratios of NH_2 -MIL-125 : TAA.

Fig. S7 (a) XRD patterns of $ZnIn_2S_4$, m-TiO₂, ZIS(50)/TiO₂, ZIS(60)/TiO₂, and ZIS(80)/TiO₂. (b) XRD patterns of $ZnIn_2S_4$, CDs/ZIS/TiO₂ composites with different CDs loading.

Fig. S8 FT-IR spectra of CDs/ZIS/TiO₂ composites with different CDs loading.

Fig. S9 (a) UV-vis spectra of P25 and m-TiO₂. (b) Tauc plots of P25 and m-TiO₂.

Fig. S10 (a) UV-vis spectra of NH₂-MIL-125, 3-CDs/ZIS/TiO₂, 10-CDs/ZIS/TiO₂ and (b) Tauc plots of NH₂-MIL-125 and ZnIn₂S₄.

Fig. S11 N_2 adsorption-desorption isotherms of (a) NH₂-MIL-125, (b) ZnIn₂S₄, (c) ZIS(60)/TiO₂ and (d) 5-CDs/ZIS/TiO₂.

Fig. S12 (a) XPS survey spectra of NH₂-MIL-125, ZIS(60)/TiO₂ and 5-CDs/ZIS/TiO₂. High-resolution XPS spectra of NH₂-MIL-125, ZIS(60)/TiO₂ and 5-CDs/ZIS/TiO₂: (b) C 1s, (c) N 1s, (d) Zn 2p, (e) In 3d and (f) S 2p.

Fig. S13 XRD patterns of 5-CDs/ZIS/TiO₂ composite before and after the photocatalytic reaction.

Fig. S14 Photocatalytic CO₂ reduction performances of different catalysts.

Fig. S15 The carbon products selectivity of $ZnIn_2S_4$, $ZIS(60)/TiO_2$ and 5-CDs/ZIS/TiO₂.

Fig. S16 Average gas evolution of oxygen and C_1 products at ZIS(60)/TiO₂ and 5-CDs/ZIS/TiO₂. The inserted pie charts are the total utilization of electrons by O₂ and C_1 evolution, indicating that the total number of reactive electrons of C_1 and reactive holes of O₂ is roughly the same.

Fig. S17 Polarization curves for $ZnIn_2S_4$, $ZIS(60)/TiO_2$ and $CDs/ZIS/TiO_2$ composites under AM1.5 G sunlight irradiation in Na₂SO₄ with a scan rate of 5 mV s⁻¹.

Fig. S18 Mechanism and energy band diagram of the photo-generated charge carrier transfer.

Supplementary Tables

Samples	$S_{BET}(m^2 \cdot g^{-1})$	$S_{Langmuir}(m^2 \cdot g^{-1})$	Pore volume	Average pore
			$(cm^{3} \cdot g^{-1})$	size(nm)
NH ₂ -MIL-125	1006	2279	0.87	19.72
ZnIn ₂ S ₄	138	322	0.32	17.15
ZIS(60)/TiO ₂	206	467	0.40	34.51
5-CDs/ZIS/TiO ₂	272	574	0.45	14.73

 Table S1 Porous characteristics of as-prepared samples.

Table S2 Summary of the CO and CH_4 selectivity over $ZnIn_2S_4$, m-TiO₂, ZIS(60)/TiO₂, and 5-CDs/ZIS/TiO₂.

	$ZnIn_2S_4$	ZIS(60)/TiO ₂	5-CDs/ZIS/TiO ₂	m-TiO ₂
CO selectivity	72.1%	30.4%	24.4%	42.9%
CH ₄ selectivity	27.9%	69.6%	75.6%	57.1%

Table S3 The charge transfer kinetics parameter on the interfaces of the photocatalysts

 based on TPV analysis.

Parameter	m-TiO ₂	$ZnIn_2S_4$	ZIS(60)/TiO ₂	5- CDs/ZIS/TiO ₂
Attenuation constants τ (ms)	0.682	0.609	0.544	0.421
Shadow part A	0.192	0.0511	0.0341	0.0934

Table S4 The average recombination lifetime of $ZnIn_2S_4$ under CO_2 -saturated MeCNand 0.5 vol% H₂O/MeCN (v/v)

Sample	<i>C</i> ₁	$\tau_{1/ms}$	<i>C</i> ₂	$\tau_{2/ms}$	$ au_{avg/{ m ms}}$
ZnIn ₂ S ₄ /CO ₂	0.804	0.055	0.065	0.412	0.190
ZnIn ₂ S ₄ /H ₂ O	0.654	0.410	0.530	0.561	0.490

Calculation process of average recombination lifetime (τ_{avg}) in TPV curves.

Single exponential fit of time decay constant:

$$y = C_1 \cdot exp\left(-\frac{x - x_0}{\tau_1}\right) + y_0 \tag{1}$$

 C_1 is the fitting undetermined coefficient, τ_1 is time decay constant in charge recombination process, y_0 is constant term.

The formula for calculating average recombination lifetime:

$$\tau_{avg} = \frac{C_1 \tau_1^2 + C_2 \tau_2^2}{C_1 \tau_1 + C_2 \tau_2} \tag{2}$$

According to equation (1) and (2), the calculation results are shown in Table S2:

Photocatalysts	Photosensitizer/ Sacrificial agent	Solvent	Product	Production rate/µmol g ⁻¹ h ⁻¹	Light	References
5-CDs/ZIS/TiO ₂	/	EA/H ₂ O	CO CH₄	19.18 13.93	300 W Xe lamp AM 1.5G filter	This work
ZIS(60)/TiO	/	EA/H ₂ O	CO CH4	14.01 9.62	300 W Xe lamp AM 1.5G filter	This work
ZnIn ₂ S ₄ /TiO ₂ nanobelts	/	H ₂ O	CH4	1.135	300 W Xe lamp	[3]
ZnIn ₂ S ₄ /N- graphene	/	H ₂ O	СО СН ₃ ОН СН ₄	2.45 1.37 1.01	300 W Xe lamp	[4]
TiO ₂ @ZnIn ₂ S ₄ /T i ₃ C ₂	/	H ₂ O	CO CH4	10.17 11.33	300 W Xe lamp	[5]
Co ₉ S ₈ @ZnIn ₂ S ₄ / CdS	NaSO3	MeCN/H ₂ O	CO H ₂	82.10 1419.14	300 W Xe lamp	[6]
C ₃ N ₄ /Au/ZnIn ₂ S ₄	TEOA Co(bpy)3 ²⁺	MeCN/H ₂ O	CO CH4 H2	242.3 / /	300 W Xe lamp	[7]
ZnIn ₂ S ₄ /BiVO ₄	/	H ₂ O	CO CH ₄	4.75 3.02	300 W Xe lamp	[8]
CeO _x -S/ZnIn ₂ S ₄	TEA	MeCN/H ₂ O	СО Н2	1800 /	455 nm LEDs	[9]
0xygen-doped ZnIn ₂ S ₄	TEOA Co(bpy)3 ²⁺	MeCN/H ₂ O	СО Н2	1680 /	$\lambda \ge 420 \text{ nm}$	[10]
ZnIn ₂ S ₄ /g-C ₃ N ₄	TEOA Co(bpy)3 ²⁺	MeCN/H ₂ O	CO H ₂	1453 863	$\lambda \ge 420 \text{ nm}$	[11]

Table S5 Comparison of similar photocatalytic systems for CO₂ reduction performance presented in recent papers.

ZnIn ₂ S ₄ nanorods	TEOA	MeCN/H ₂ O	CO CH₄	1.5 0.22	$\lambda \ge 800 \ nm$	[12]
7-1- 6 /T-0	TEOA		 CO	4410		
$Znin_2S_4/11O_2$	IEOA	MeCN/H ₂ O		4410	300 W Xe lamp	[13]
nanosheets	Co(bpy) ₃ ²⁺		H ₂	/		
Phosphorus-	TEOA	MeCN/H-O	СО	476) ≥ 120 nm	[14]
doped ZnIn ₂ S ₄	Co(bpy) ₃ ²⁺	Meerwii <u>7</u> 0	H ₂	/	<i>π</i> <u>−</u> + 20 mm	[17]
Yolk–shell			со	325.29		
TiO ₂ @ZnIn ₂ S ₄	TEOA	MeCN	H ₂	227.18	LED $\lambda = 420 \text{ nm}$	[15]
Oxygen-doped	TEOA		со	188.4		
C ₃ N ₄ /ZnIn ₂ S ₄	Co(bpy) ₃ ²⁺	MeCN/H ₂ O	CH_4	1.18	$\lambda \ge 400 \text{ nm}$	[16]
WO ₃ -			СО	15.37		
TiO ₂ /Cu ₂ ZnSnS ₄	/	H ₂ O	CH_4	1.69	λ > 420 nm	[17]
NH ₂ -UiO-	1	цо	11.24	2.01	300 W Xe lamp	[18]
66/CdIn ₂ S ₄	/	H ₂ O	11.24	2.91		
Cd _{0.5} Zn _{0.5} S/CdIn			СО	14.07		
$_2\mathbf{S}_4$	/	H ₂ O	CH_4	4.23	300 W Xe lamp	[19]
			СО	8.20		
WQDs/CdIn ₂ S ₄	/	H ₂ O	CH_4	1.60	300 W Xe lamp	[20]
			со	7.73		
CuInS ₂ /C/TiO ₂	/	H ₂ O	CH_4	/	300 W Xe lamp	[21]
	į	MeCN/H ₂ O	СО	9.02	300 W Xe lamp	
TiO ₂ /CsPbBr ₃			H_2	0.66		[22]
		H ₂ O	со	3.16	300 W Xe lamp	5443
Ag–TiO ₂ /TS-1	/		CH_4	0.47		[23]
			СО	5.70	300 W Xe lamp	
COP-P/TiO ₂	/	H ₂ O	CH_4	0.26		[24]

References

[1] H. Wang, J. J. Cao, Y. J. Zhou, X. Wang, H. Huang, Y. Liu, M. W. Shao, Z. H. Kang, Carbon

dots modified $Ti_3C_2T_x$ -based fibrous supercapacitor with photo-enhanced capacitance, Nano Res. 2021, 14, 3886-3892.

[2] G. L. Mo, L. X. Wang, J. H. Luo, Controlled thermal treatment of NH₂-MIL-125(Ti) for drastically enhanced photocatalytic reduction of Cr(VI), Sep. Purif. Technol. 2021, 277, 119643.

[3] G. Yang, D. Chen, H. Ding, J. Feng, J. Z. Zhang, Y. Zhu, S. Hamid, D. W. Bahnemann, Welldesigned 3D $ZnIn_2S_4$ nanosheets/TiO₂ nanobelts as direct Z-scheme photocatalysts for CO₂ photoreduction into renewable hydrocarbon fuel with high efficiency, Appl. Catal. B 2017, 219, 611-618.

[4] C. Yang, Q. Li, Y. Xia, K. Lv, M. Li, Enhanced visible-light photocatalytic CO₂ reduction performance of Znln₂S₄ microspheres by using CeO₂ as cocatalyst, Appl. Surf. Sci. 2019, 464, 388-395.

[5] K. Wang, X. Li, N. Wang, Q. Shen, M. Liu, J. Zhou, N Li, Z-scheme core-shell meso- $TiO_2@ZnIn_2S_4/Ti_3C_2$ MXene enhances visible light-driven CO_2 -to- CH_4 selectivity. Ind. Eng. Chem. Res 2021, 60, 8720-8732.

[6] Y. Zhang, Y. X. Wu, L. Wan, H. J. Ding, H. X. Li, X. Y. Wang, W. H. Zhang, Hollow coreshell Co₉S₈@ZnIn₂S₄/CdS nanoreactor for efficient photothermal effect and CO₂ photoreduction, Appl. Catal. B 2022, 311, 121255.

[7] G. P. Zhang, X. W. Zhu, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, H. Xu, J. M. Lu, Hierarchical Z-scheme $g-C_3N_4/Au/ZnIn_2S_4$ photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion, Environ. Sci.: Nano 2020, 7, 676-687.

[8] Q. Han, L. Li, W. Gao, Y. Shen, L. Wang, Y. Zhang, X. Wang, Q. Shen, Y. Xiong, Y. Zhou, Z. Zou, Elegant construction of ZnIn₂S₄/BiVO₄ hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO₂ photoreduction, ACS Appl. Mater. Interfaces. 2021, 13, 15092-15100.

[9] T. T. Hou, N. C. Luo, Y. T. Cuic, J. M. Lu, L. Li, K. E. MacArthure, M. Heggene, R. Chen, F. T. Fan, W. M. Tian, S. Y. Jin, F. Wang, Selective reduction of CO₂ to CO under visible light by controlling coordination structures of CeO_x-S/ZnIn₂S₄ hybrid catalysts, Appl. Catal. B 2019, 245, 262-270.

[10] B. Pan, Y. Wu, B. Rhimi, J. N. Qin, Y. Huang, M. Z. Yuan, C. Y. Wang, Oxygen-doping of

ZnIn₂S₄ nanosheets towards boosted photocatalytic CO₂ reduction, J. Energy. Chem. 2021, 57, 1-9. [11] K. H. Chen, X. W. Wang, Q. Y. Li, Y. N. Feng, F. F. Chen, Y. Yu, Spatial distribution of ZnIn₂S₄ nanosheets on g-C₃N₄ microtubes promotes photocatalytic CO₂ reduction, Chem. Eng. J. 2021, 418, 129476.

[12] M. S. Yu, X. Y. Lv, A. M. Idris, S. H. Li, S. H. Li, J. Q. Lin, H. Lin, J. Wang, Z. Q. Li, Upconversion nanoparticles coupled with hierarchical $ZnIn_2S_4$ nanorods as a near-infrared responsive photocatalyst for photocatalytic CO₂ reduction, J. Colloid Interface Sci. 2022, 612, 782-791.

[13] E. Kim, K. H. Do, J. M. Wang, Y. Hong, A. P. Rangappa, D. A. Reddy, D. P. Kumar, T. K. Kim, Construction of 1D TiO₂ nanotubes integrated ultrathin 2D ZnIn₂S₄ nanosheets heterostructure for highly efficient and selective photocatalytic CO₂ reduction, Appl. Surf. Sci. 2022, 587, 152895.
[14] J. N. Qin, Q. Zhao, Y. L. Zhao, Y. Wu, B. Pan, C. Y. Wang, Metal-free phosphorus-doped ZnIn₂S₄ nanosheets for enhanced photocatalytic CO₂ reduction, J. Phys. Chem. C 2021, 125, 23813-23820.

[15] P. She, B. Y. Guan, J. Y. Sheng, Y. Y. Qi, G. Y. Qiao, H. B Rui, G. Y. Lu, J. S. Qin, H. Rao, Bioinspired spike-like double yolk-shell structured TiO₂@ZnIn₂S₄ for efficient photocatalytic CO₂ reduction, Catal. Sci. Technol. 2022, 12, 1092-1099.

[16] K. Zhu, J. O. Yang, Q. Zeng, S. G. Meng, W. Teng, Y. H. Song, S. Tang, Y. J. Cui, Fabrication of hierarchical ZnIn₂S₄@CNO nanosheets for photocatalytic hydrogen production and CO₂ photoreduction, Chin. J. Catal. 2020,41, 454-463.

[17] A. Raza, H. Shen, A. Haidry, L. Sun, R. Liu, S. Cui, Studies of Z-scheme WO₃- TiO_2/Cu_2ZnSnS_4 ternary nanocomposite with enhanced CO₂ photoreduction under visible light irradiation, J. CO₂ Util. 2020, 37, 260-271.

[18] L. Hong, R. Guo, Z. Zhang, Y. Yuan, X. Ji, Z. Lin, W. Pan, Fabrication of porous octahedronflowerlike microsphere NH₂-UiO-66/CdIn₂S₄ heterojunction photocatalyst for enhanced photocatalytic CO₂ reduction, J. CO₂ Util. 2021, 51, 101650.

[19] Y. Yuan, R. Guo, Z. Zhang, L. Hong, X. Ji, Z. Lin, W. Pan, Cd_{0.5}Zn_{0.5}S quantum dot-modified CdIn₂S₄ nano-octahedron as the 0D/3D hybrid heterojunction for CO₂ photoreduction, Energy Fuels. 2021, 35, 13291-13303.

[20] Z. Zhang, Y. Cao, F. Zhang, W. Li, Y. Li, H. Yu, M. Wang, H. Yu, Tungsten oxide quantum

dots deposited onto ultrathin $CdIn_2S_4$ nanosheets for efficient S-scheme photocatalytic CO_2 reduction via cascade charge transfer, Chem. Eng. J. 2022, 428, 131218.

[21] W. Bi, L. Zhang, H. Jiang, C. Li, Y. Hu, Construction of CuInS₂/C/TiO₂ hierarchical tandem heterostructures with optimized CO₂ photoreduction under visible light, Chem. Eng. J. 2022, 433, 133679.

[22] F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Unique S-scheme heterojunctions in selfassembled TiO₂/CsPbBr₃ hybrids for CO₂ photoreduction, Nat. Commun 2020, 11, 4613.

[23] Y. Sun, G. Li, Y. Gong, Z. Sun, H. Yao, X. Zhou, Ag and TiO₂ nanoparticles co-modified defective zeolite TS-1 for improved photocatalytic CO₂ reduction, J. Hazard. Mater. 2021, 403, 124019.

[24] Y. Zhang, G. Zhang, Y. Wang, Z. Ma, T. Yang, T. Zhang, Y. Zhang, In-situ synthesized porphyrin polymer/TiO₂ composites as high-performance Z-scheme photocatalysts for CO₂ conversion, J. Colloid. Interf. Sci. 2021, 596, 342-351.