Steering selectivity in detection of exhaled biomarkers over oxide nanofibers

dispersed with noble metals

Seyeon Park,^{a, c} Yunsung Lim,^b DongHwan Oh,^a Jaewan Ahn,^{a, c} Chungseong Park,^{a, c} Minhyun Kim,^a WooChul Jung,^a Jihan Kim,^b and Il-Doo Kim*^{a, c}

a. Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu Daejeon 34141, Republic of Korea
b. Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu Daejeon 34141, Republic of Korea

c. Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu Daejeon 34141, Republic of Korea

* Corresponding author.

E-mail. idkim@kaist.ac.kr (I.-D. Kim)

Table of contents

Figure S1. (a) XRD patterns and (b) average crystallite sizes of 2Pd-In₂O₃ nanofibers synthesized from different batches.

Figure S2. (a-c) SEM images of 2Pd-In₂O₃ nanofibers synthesized from different batches.

Figure S3. SEM images of In₂O₃ nanofibers.

Figure S4. (a) In 3d and (b) Auger In MNN spectra of In₂O₃, 0.05Ru-In₂O₃, 0.1Pd-In₂O₃, and 2Pt-In₂O₃ samples.

Figure S5. Gas sensing results at controllable loading of (a) Ru-In₂O₃, (b) Pd-In₂O₃, and (c)

Pt-In₂O₃ respectively toward 5 ppm CH₃SH, H₂S, and CH₃COCH₃ at various temperatures.

Table S1. Physical characteristics of In₂O₃, 0.05Ru-In₂O₃, 0.1Pd-In₂O₃, and 2Pt-In₂O₃ samples.

Figure S6. Repeatability tests results of (a) dynamic resistance change and (b) dynamic response during sensing tests toward 1–5 ppm H_2S .

Figure S7. XRD patterns of Ru-, Pd-, and Pt-In₂O₃ samples.

Figure S8. Synchrotron XRD patterns of the pristine In₂O₃, 0.05Ru- In₂O₃, 0.1Pd- In₂O₃, and 2Pt-In₂O₃ samples.

Figure S9. Average crystallite sizes, calculated by the Scherrer equation for (222), (400), and (440) reflections, of the pristine In₂O₃, 0.05Ru- In₂O₃, 0.1Pd- In₂O₃, and 2Pt-In₂O₃ samples.

Figure S10. BJH pore size distribution of In₂O₃, 0.05Ru-In₂O₃, 0.1Pd-In₂O₃, and 2Pt-In₂O₃ samples.

Figure S11. The deconvolution results O 1s spectra obtained from XPS analysis for (a) In_2O_3 , (b) $0.05Ru-In_2O_3$, (c) $0.1Pd-In_2O_3$, and (d) $2Pt-In_2O_3$ samples.

Figure S12. In₂O₃ lattice constants of various samples, calculated from the synchrotron XRD results.

Figure S13. UPS spectra, cut-off energy estimation, and fermi level estimation of (a-c) In₂O₃, (d-f) 0.05Ru- In₂O₃, (g-i) 0.1Pd- In₂O₃, and (j-l) 2Pt-In₂O₃ samples.

Figure S14. Configurations of CH₃SH adsorbed onto (a, b, c, d) Ru-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S15. Configurations of CH_3SH adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S16. Configurations of CH_3SH adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S17. Configurations of H₂S adsorbed onto (a, b, c, d) Ru-In₂O₃, (e, f) comparison of

the calculated values of the adsorption energy and the charge transfer.

Figure S18. Configurations of H_2S adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S19. Configurations of H_2S adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S20. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Ru-In₂O₃, (e, f)

comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S21. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f)

comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S22. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f)

comparison of the calculated values of the adsorption energy and the charge transfer.

Table S2. The computation results of the adsorption energy and the charge transfer values

between CH₃SH gas and metal atoms. (Bold texts indicate the optimized configuration.) **Table S3.** The computation results of the adsorption energy and the charge transfer values

between H₂S gas and metal atoms. (Bold texts indicate the optimized configuration.) **Table S4.** The computation results of the adsorption energy and the charge transfer values between CH₃SOCH₃ gas and metal atoms. (Bold texts indicate the optimized configuration.) **Table S5.** The computation results of the adsorption energy, the charge transfer values and the distance between metals and gases. (Bold texts indicate the most favorable sensing

materials toward each analyte.)

Figure S1. (a) XRD patterns and (b) average crystallite sizes of 2Pd-In₂O₃ nanofibers synthesized from different batches.

Figure S2. (a-c) SEM images of 2Pd-In₂O₃ nanofibers synthesized from different batches.

Figure S3. SEM images of In_2O_3 nanofibers.

Figure S4. (a) In 3d and (b) Auger In MNN spectra of In_2O_3 , 0.05Ru- In_2O_3 , 0.1Pd- In_2O_3 , and 2Pt- In_2O_3 samples.

Figure S5. Gas sensing results at controllable loading of (a) Ru-In₂O₃, (b) Pd-In₂O₃, and (c) Pt-In₂O₃ respectively toward 5 ppm CH₃SH, H₂S, and CH₃COCH₃ at various temperatures.

Sample	Noble metal loading ^[a] (wt%)	D _{In-XRD} ^[b] (nm)	$S_{BET}^{[c]}$ (m ² g ⁻¹)	$\frac{V_{pore}^{[c]}}{(cm^{3}g^{-1})}$
In ₂ O ₃		25.2 ± 1.3	11	0.041
0.05Ru-In ₂ O ₃	0.04	23.2 ± 0.8	14	0.055
0.1Pd-In ₂ O ₃	0.08	23.5 ± 0.8	15	0.057
2Pt-In ₂ O ₃	1.9	17.1 ± 0.9	28	0.108

Table S1. Physical characteristics of In_2O_3 , $0.05Ru-In_2O_3$, $0.1Pd-In_2O_3$, and $2Pt-In_2O_3$ samples. [a] Noble metal loading based on wt% (Metal/In₂O₃) was measured by ICP-MS, [b] average crystallite size of In_2O_3 (222), (400), (440) and (622) reflections were calculated by the Scherrer equation, and [c] BET surface area (S_{BET}) and pore volume (V_{pore}) of the oxides were obtained from N₂ physisorption at -196 °C.

Figure S6. Repeatability tests results of (a) dynamic resistance change and (b) dynamic response during sensing tests toward 1-5 ppm H₂S.

Figure S7. XRD patterns of Ru-, Pd-, and Pt-In₂O₃ samples.

Figure S8. Synchrotron XRD patterns of the pristine In₂O₃, 0.05Ru- In₂O₃, 0.1Pd- In₂O₃, and 2Pt-In₂O₃ samples.

Figure S9. Average crystallite sizes, calculated by the Scherrer equation for (222), (400), and (440) reflections, of the pristine In₂O₃, 0.05Ru- In₂O₃, 0.1Pd- In₂O₃, and 2Pt-In₂O₃ samples.

Figure S10. BJH pore size distribution of In₂O₃, 0.05Ru-In₂O₃, 0.1Pd-In₂O₃, and 2Pt-In₂O₃ samples.

Figure S11. The deconvolution results O 1s spectra obtained from XPS analysis for (a) In_2O_3 , (b) $0.05Ru-In_2O_3$, (c) $0.1Pd-In_2O_3$, and (d) $2Pt-In_2O_3$ samples.

Figure S12. In₂O₃ lattice constants of various samples, calculated from the synchrotron XRD results.

Figure S13. UPS spectra, cut-off energy estimation, and fermi level estimation of (a-c) In₂O₃, (d-f) 0.05Ru- In₂O₃, (g-i) 0.1Pd- In₂O₃, and (j-l) 2Pt-In₂O₃ samples.

Figure S14. Configurations of CH_3SH adsorbed onto (a, b, c, d) $Ru-In_2O_3$, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S15. Configurations of CH_3SH adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S16. Configurations of CH_3SH adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S17. Configurations of H_2S adsorbed onto (a, b, c, d) Ru-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S18. Configurations of H_2S adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S19. Configurations of H_2S adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S20. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Ru-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S21. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Pd-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Figure S22. Configurations of CH₃COCH₃ adsorbed onto (a, b, c, d) Pt-In₂O₃, (e, f) comparison of the calculated values of the adsorption energy and the charge transfer.

Target analyte	Metal	Configuration	Adsorption energy (eV)	ΔQ (electrons)
	Ru	s1	-0.906	-0.061
		s2	-1.593	-0.165
		s3	-1.499	-0.1203
		s4	-1.007	-0.107
—	Pd	s1	-0.8043	-0.172
CH3SH		s2	-1.216	-0.205
		s3	-0.308	0.023
		s4	-1.267	-0.186
	Pt	s1	-0.265	-0.1206
		s2	-0.181	-0.047
		s3	-0.134	-0.060
		s4	-1.460	-0.128

Table S2. The computation results of the adsorption energy and the charge transfer values

 between CH₃SH gas and metal atoms. (Bold texts indicate the optimized configuration.)

Target analyte	Metal	Configuration	Adsorption energy (eV)	ΔQ (electrons)
	Ru	s1	-0.721	-0.125
		s2	-0.769	-0.054
		s3	-0.030	0.169
		s4	-0.732	-0.048
_	Pd	s1	-1.153	-0.131
ЦС		s2	-1.117	-0.104
H ₂ S		s3	-1.124	-0.108
		s4	-1.159	-0.117
	Pt	s1	-0.142	-0.045
		s2	-0.093	-0.070
		s3	-0.086	0.150
		s4	-1.396	-0.011

It is noted that the S atom of CH₃SH has a greater electron density than that of H₂S via inductive effects.¹ The theoretical Bader charge analyses based on the electron probability distributions can be used to estimate the electron density distribution around a molecule, through which we found that S would have a higher probability distribution in CH₃SH, enabling the charge transfer. Thus, the adsorption energy and the charge transfer of CH₃SH can be overestimated due to its electron-donating effects.

Target analyte	Metal	Configuration	Adsorption energy (eV)	ΔQ (electrons)
CH ₃ COCH ₃	Ru	sl	-0.714	0.146
		s2	-1.205	0.100
		s3	-0.762	0.078
		s4	-0.648	0.094
	Pd	s1	-0.806	0.050
		s2	-0.567	0.114
		s3	-0.9120	0.071
		s4	-0.944	0.111
	Pt	s1	-0.103	0.124
		s2	-0.220	0.065
		s3	-0.886	0.220
		s4	-0.130	0.155

Table S4. The computation results of the adsorption energy and the charge transfer values between CH₃SOCH₃ gas and metal atoms. (Bold texts indicate the optimized configuration.)

The two significant factors, adsorption energy and charge transfer were considered when optimizing the configuration of gases adsorbed on the metal atoms. For the cases of CH_3SH and H_2S , the final configurations were chosen based on the greater absolute values of the adsorption energy and the charge transfer. A rule of thumb in the choice of the final configuration is the greatest adsorption energy. However, if the charge transfer value, in this case, is not fair enough, the configuration with the second- or third-largest adsorption energy and the sufficiently large charge transfer was studied further. When the H atom of the gases interacts with the O atom of the oxides, colored in yellow in Table S2 and S3, the adsorption energy or the charge transfer shows smaller absolute values, supporting our optimized configurations. However, for the case of Pt, the interaction significantly reinforces the adsorption of the gas onto the oxides in addition to the adsorption on the surface of noble metals, fairly stabilizing the analyte molecules and thereby exaggerating the values of adsorption energy and charge transfer. The exaggeration, which was unlikely to be observed during sensing mechanism, made the computation results not analogous to the sensing results

of the $Pt-In_2O_3$ sample, whose sensitivities against the volatile sulfur compounds were decreased by the functionalization of the Pt catalysts. Thus, we chose the configuration labeled s1, which shows no interaction between the H atom and the O atom for the Pt- In_2O_3 sample.

Target analyte	Sample	Adsorption energy (eV)	ΔQ (electrons)	Metal-gas distance (^Å)
CH₃SH	0.05Ru-In ₂ O ₃	-1.593	-0.165	2.27
	0.1Pd-In ₂ O ₃	-1.216	-0.205	2.25
	2Pt-In ₂ O ₃	-1.460	-0.128	2.76
H ₂ S	0.05Ru-In ₂ O ₃	-0.769	-0.054	2.33
	0.1Pd-In ₂ O ₃	-1.153	-0.131	2.24
	2Pt-In ₂ O ₃	-1.396	-0.010	3.04
CH ₃ COCH ₃	0.05Ru-In ₂ O ₃	-1.205	0.100	2.00
	0.1Pd-In ₂ O ₃	-0.944	0.111	2.03
	2Pt-In ₂ O ₃	-0.886	0.220	1.99

Table S5. The computation results of the adsorption energy, the charge transfer values and the distance between metals and gases. (Bold texts indicate the most favorable sensing materials toward each analyte.)

Supporting Reference

1. L. S. Levitt and B. W. Levitt, *J Org Chem*, 1972, **37**, 332-&.