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Fig. S1. PXRD patterns with corresponding powder photo for COF-OH-0 in

experimental (a), simulated with AA stacking mode (b) and for simulated with AB
stacking mode (c).



—
Q
~

Intensity (a.u.)

4 12 20 28
20 (degree)

(b) E—
E
S
>
:%'
3
=
A I 1 A i
4 12 20 28

20 (degree)

—
(@)
~

— AB
S
8
=
7]
[
Q
=
| | l I l; 1
4 12 20 28

20 (degree)
Fig. S2. PXRD patterns with corresponding powder photo for COF-OH-1 in
experimental (a), simulated with AA stacking mode (b) and for simulated with AB

stacking mode (c).
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Fig. S3. PXRD patterns with corresponding powder photo for COF-OH-2 in
experimental (a), simulated with AA stacking mode (b) and for simulated with AB
stacking mode (c).
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Fig. S4. PXRD patterns with corresponding powder photo for COF-OH-3 in
experimental (a), simulated with AA stacking mode (b) and for simulated with AB

stacking mode (c).
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Fig. S5. Simulated packing structures (O: red; N: blue; C: white; hydrogen were omitted
for clarity) for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d),

respectively.
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Fig. S6. N, adsorption (filled symbols) and desorption (open symbols) isotherm with the
pore size distribution (inset) for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-
OH-3 (d), respectively.
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Fig. S7. Experimental PXRD patterns after 3-day exposure to various solvents for COF-
OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S8. The thermogravimetric analysis (TGA) plot of COF-OH-0 (a), COF-OH-1 (b),
COF-OH-2 (c), COF-OH-3 (d), respectively.



(a)

1631cm’ €=0
8 1501cm™ €=C

3455

TH(%)
TI(%)

3318 3204cm” N-H 3318 3204cm” N-H

|—— COF-OH 0 —— COF-OH 1
|——L-NH2 1697cm’ C=0 — L-NH2 1668cm™’ C=0
j—— 0-OH-CHO ——1-OH-CHO
T L] L] L] T T
3500 3000 2500 2000 1500 1000 500 35I00 30l00 25I00 20I00 15I00 10I00 500
(C) Wavenumberiem™) (d) Wavenumber(cm '1)

1629em™ C=0 1620cm’ C=0

1255 em ™ -C-N|
1576cm €=(

A~
m C=

3455
3318 3204cm™ N-H

TI(%)

TH%)

3318 3204cm™’ N-H

——COF-OH 2 —— COF-OH 3
——L-NH, —) i
——2-0H-CHO 3.OH-CHO 1641cm™ C=0
3 ' o i : i ) i } v T T T T T T
3500 3000 2500 200 1500 1000 3500 3000 2500 2000 1500 1000 500
Wavenumber(cm™) Wavenum ber(cm'1)

Fig. S9. FT-IR spectra of the four COFs with their corresponding precursors COF-OH-0
(a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S10. CP/MAS BC solid-state NMR spectra of COF-OH-0 (a), COF-OH-1 (b),
COF-0H-2 (c), COF-OH-3 (d), respectively.
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Fig. S11. SEM images of COF-OH-0 (a, b), COF-OH-1 (c, d), COF-OH-2 (e, f), COF-
OH-3 (g, h), respectively.
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Fig. S12. TEM images with the lattice fringes (inset of the right one) for COF-OH-0 (a,
b), COF-OH-1 (c, d), COF-OH-2 (e, f), COF-OH-3 (g, h), respectively.
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Fig. S13. The Tauc plots for the band gaps of COF-OH-0 (a), COF-OH-1 (b), COF-
OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S14. Mott-Schottky plots for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c),
COF-0H-3 (d), respectively.
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Fig. S15. Hydrogen evolution plots for COF-OH-3 with 1% Pt using different sacrificial
electron donor reagents (AA: ascorbic acid; TEOA: triethanolamine; EDTA:
ethylenediaminetetraacetic acid disodium salt dihydrate).
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Fig. S16. Hydrogen evolution plots for COF-OH-3 using ascorbic acid as sacrificial
electron donor reagents with different platinum contents.
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Fig. S17. Time course for photocatalytic H, production of COF-OH-3 (50 mg of catalyst
with 1 wt % Ptin 50 mL 0.1 M ascorbic acid aqueous solution) under A = 420 nm light
(300 W Xe lamp equipped with a band-pass filter A = 420 nm).
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Fig. S18. PXRD patterns for COF-OH-3 before (red line) and after (black line) the 30
hours irradiation reaction.
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Fig. S19. FT-IR spectrum for COF-OH-3 before (red line) and after (black line) the 30
hours irradiation reaction.
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Table S1. Experiment PXRD data for COF-OH-0-3.

Samples | COF-OH-0 COF-OH-1 COF-OH-2 COF-OH-3
(100) 5.58° 5.54° 5.58° 5.64°

(110) 9.72° 9.70° 9.74° 9.86°

(200) 11.26° 11.16° 11.24° -

(210) 14.98° 14.92° 14.74° 14.88°

(220) 19.62° 19.61° - -

(001) 25.68° 26.28° 26.60° 26.32°
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Table S2. The crystal structure and refinement data for COF-OH-0-3.

Sample a,b,c(A) | o B y() | V(A3 | Space group R,, Ryp

18.7121 90

COF-OH-0 18.7121 90 1043.6 | P-6 12.47%, 9.39%
3.4416 120
34131 120

COF-OH-1 18.7075 90 10344 | P1 5.11%, 4.04%
18.7075 90
3.4566 120

COF-OH-2 18.5924 90 10348 | P1 5.03%, 3.99%
18.5924 90
18.7251 90

COF-OH-3 18.7251 90 1044.5 | P-6 6.86%, 5.49%
3.4397 120
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Table S3. The flat band and band gap data for COF-OH-0-3>.

Calculated valence

Sample Flat band (V) band (V) Band gap (eV)®
COF-OH-0 —0.51 2.17 2.68
COF-0OH-1 -0.24 1.66 1.90
COF-OH-2 —0.55 1.47 2.02
COF-OH-3 —0.62 1.66 2.28

[a] All the potentials (V) have been calculated vs. SHE; [b] Calculated from the solid
UV-—vis diffuse reflectance spectra.
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Table S4. Summary of the representative COFs as photocatalysts for photocatalytic
hydrogen evolution under visible-light irradiation?®.

COFs Sacrificial agent (mmolf-g'}}h'l) Ref.
COF-JLU100 AA 100 1
CYANO-COF AA 60.85 2
Tp-2C/BPy?*"-COF AA 34.6 3
COF TtaTfa AA 20.7 4
SonoCOF-3 AA 16.6 5
BTH-3 AA 15.1 6
COF TpaTfa AA 14.9 4
NKCOF-108 AA 11.6 7
COF TtaTpa AA 10.8 4
BTH-1 AA 10.5 6
FS-COF AA 10.1 8
COF-OH-3 AA 9.89 This work
TF-HUST-A1 TEOA 9.2 9
Py-CITP-BT-COF AA 8.875 10
TP-COF AA 8.42 11
TpPa-COF-(CH3), SA 8.33 12
TpPa-Cl, SA 7.6 13
TpPa-1-COF® AA 5.585 14
TpPa-1 AA 5.479 14
CTF-HUST-C1 TEOA 5.1 15
S-COF AA 4.44 8
TpPa-COF-CHj; SA 3.07 12
COF-OH-2 AA 2.91 This work
Py-FTP-BT-COF AA 2.875 10
sp?c-COFgrpn TEOA 2.12 16
PyTz-COF AA 2.0724 17
TFPT-COF TEOA 1.97 18
N;-COF TEOA 1.703 19
TP-COF (Ref.®) AA 1.6 8
TpPa-COF SA 1.56 12
sp?c-COF TEOA 1.36 16
TpPa-1-COF SA 1.223 20
BTH-2 AA 1.2 6
NTU-BDA-THTA AA 1.127 21
Py-HTP-BT-COF AA 1.078 10
BT-TAPT-COF AA 0.949 22
N,-COF¢ TEOA 0.782 23
BtCOF150 TEOA 0.75 24
N,-COF TEOA 0.438 19
N,-COFd TEOA 0.414 23
ZnPor-DETH-COF TEOA 0.413 25
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TP-BDDA TEOA 0.324 26
COF-42 TEOA 0.233 23
TpPa-COF-NO, SA 0.22 12
COF(ERDN) TEOA 0.212 16
N;-COFe TEOA 0.163 23
COF-OH-0 AA 0.11 This work
N;-COF¢ TEOA 0.1 23
A-TEBPY-COF TEOA 0.098 27
N;-COF TEOA 0.09 19
BT-COF AA 0.076 11
No-COF TEOA 0.023 19

[a] The reactions were performed with Pt as co-catalyst; [b] The co-catalyst is MoS;; [c]
The co-catalyst is [Co(dmgH),pyCl]; [d] The co-catalyst is [Co(dmgBF;),(OH,),]; AA:
Ascorbic acid; SA: Sodium ascorbate; TEOA: triethanolamine.
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