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Fig. S1. PXRD patterns with corresponding powder photo for COF-OH-0 in 
experimental (a), simulated with AA stacking mode (b) and for simulated with AB 
stacking mode (c).
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Fig. S2. PXRD patterns with corresponding powder photo for COF-OH-1 in 
experimental (a), simulated with AA stacking mode (b) and for simulated with AB 
stacking mode (c).
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Fig. S3. PXRD patterns with corresponding powder photo for COF-OH-2 in 
experimental (a), simulated with AA stacking mode (b) and for simulated with AB 
stacking mode (c).
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Fig. S4. PXRD patterns with corresponding powder photo for COF-OH-3 in 
experimental (a), simulated with AA stacking mode (b) and for simulated with AB 
stacking mode (c).
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Fig. S5. Simulated packing structures (O: red; N: blue; C: white; hydrogen were omitted 
for clarity) for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d), 
respectively.
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Fig. S6. N2 adsorption (filled symbols) and desorption (open symbols) isotherm with the 
pore size distribution (inset) for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-
OH-3 (d), respectively.
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Fig. S7. Experimental PXRD patterns after 3-day exposure to various solvents for COF-
OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d), respectively.

8



Fig. S8. The thermogravimetric analysis (TGA) plot of COF-OH-0 (a), COF-OH-1 (b), 
COF-OH-2 (c), COF-OH-3 (d), respectively.

9



Fig. S9. FT-IR spectra of the four COFs with their corresponding precursors COF-OH-0 
(a), COF-OH-1 (b), COF-OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S10. CP/MAS 13C solid-state NMR spectra of COF-OH-0 (a), COF-OH-1 (b), 
COF-OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S11. SEM images of COF-OH-0 (a, b), COF-OH-1 (c, d), COF-OH-2 (e, f), COF-
OH-3 (g, h), respectively.
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Fig. S12. TEM images with the lattice fringes (inset of the right one) for COF-OH-0 (a, 
b), COF-OH-1 (c, d), COF-OH-2 (e, f), COF-OH-3 (g, h), respectively.
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Fig. S13. The Tauc plots for the band gaps of COF-OH-0 (a), COF-OH-1 (b), COF-
OH-2 (c), COF-OH-3 (d), respectively.
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Fig. S14. Mott-Schottky plots for COF-OH-0 (a), COF-OH-1 (b), COF-OH-2 (c), 
COF-OH-3 (d), respectively.
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Fig. S15. Hydrogen evolution plots for COF-OH-3 with 1% Pt using different sacrificial 
electron donor reagents (AA: ascorbic acid; TEOA: triethanolamine; EDTA: 
ethylenediaminetetraacetic acid disodium salt dihydrate).

Fig. S16. Hydrogen evolution plots for COF-OH-3 using ascorbic acid as sacrificial 
electron donor reagents with different platinum contents.
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Fig. S17. Time course for photocatalytic H2 production of COF-OH-3 (50 mg of catalyst 
with 1 wt % Pt in 50 mL 0.1 M ascorbic acid aqueous solution) under λ = 420 nm light 
(300 W Xe lamp equipped with a band-pass filter λ = 420 nm). 
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Fig. S18. PXRD patterns for COF-OH-3 before (red line) and after (black line) the 30 
hours irradiation reaction.

Fig. S19. FT-IR spectrum for COF-OH-3 before (red line) and after (black line) the 30 
hours irradiation reaction.
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Table S1. Experiment PXRD data for COF-OH-0–3.

Samples COF-OH-0 COF-OH-1 COF-OH-2 COF-OH-3

(100) 5.58° 5.54° 5.58° 5.64°

(110) 9.72° 9.70° 9.74° 9.86°

(200) 11.26° 11.16° 11.24° –

(210) 14.98° 14.92° 14.74° 14.88°

(220) 19.62° 19.61° – –

(001) 25.68° 26.28° 26.60° 26.32°
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Table S2. The crystal structure and refinement data for COF-OH-0–3.

Sample a, b, c (Å) α, β, γ (°) V (Å3) Space group Rp, Rwp

COF-OH-0
18.7121
18.7121
3.4416

90
90
120

1043.6 P-6 12.47%, 9.39%

COF-OH-1
3.4131
18.7075
18.7075

120
90
90

1034.4 P 1 5.11%, 4.04%

COF-OH-2
3.4566
18.5924
18.5924

120
90
 90

1034.8 P 1 5.03%, 3.99%

COF-OH-3
18.7251
18.7251
3.4397

90
90
120

1044.5 P-6 6.86%, 5.49%
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Table S3. The flat band and band gap data for COF-OH-0–3a.

Sample Flat band (V) Calculated valence 
band (V) Band gap (eV)b

COF-OH-0 –0.51 2.17 2.68

COF-OH-1 –0.24 1.66 1.90

COF-OH-2 –0.55 1.47 2.02

COF-OH-3 –0.62 1.66 2.28
[a] All the potentials (V) have been calculated vs. SHE; [b] Calculated from the solid 
UV−vis diffuse reflectance spectra.
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Table S4. Summary of the representative COFs as photocatalysts for photocatalytic 
hydrogen evolution under visible-light irradiationa.

COFs Sacrificial agent HER
(mmol·g-1·h-1) Ref.

COF-JLU100 AA 100 1
CYANO-COF AA 60.85 2
Tp-2C/BPy2+-COF AA 34.6 3
COF TtaTfa AA 20.7 4
SonoCOF-3 AA 16.6 5
BTH-3 AA 15.1 6
COF TpaTfa AA 14.9 4
NKCOF-108 AA 11.6 7
COF TtaTpa AA 10.8 4
BTH-1 AA 10.5 6
FS-COF AA 10.1 8
COF-OH-3 AA 9.89 This work
TF-HUST-A1 TEOA 9.2 9
Py-ClTP-BT-COF AA 8.875 10
TP-COF AA 8.42 11
TpPa-COF-(CH3)2 SA 8.33 12
TpPa-Cl2 SA 7.6 13
TpPa-1-COFb AA 5.585 14
TpPa-1 AA 5.479 14
CTF-HUST-C1 TEOA 5.1 15
S-COF AA 4.44 8
TpPa-COF-CH3 SA 3.07 12
COF-OH-2 AA 2.91 This work
Py-FTP-BT-COF AA 2.875 10
sp2c-COFERDN TEOA 2.12 16
PyTz-COF AA 2.0724 17
TFPT-COF TEOA 1.97 18
N3-COF TEOA 1.703 19
TP-COF (Ref.8) AA 1.6 8
TpPa-COF SA 1.56 12
sp2c-COF TEOA 1.36 16
TpPa-1-COF SA 1.223 20
BTH-2 AA 1.2 6
NTU-BDA-THTA AA 1.127 21
Py-HTP-BT-COF AA 1.078 10
BT-TAPT-COF AA 0.949 22
N2-COFc TEOA 0.782 23
BtCOF150 TEOA 0.75 24
N2-COF TEOA 0.438 19
N2-COFd TEOA 0.414 23
ZnPor-DETH-COF TEOA 0.413 25
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TP-BDDA TEOA 0.324 26
COF-42 TEOA 0.233 23
TpPa-COF-NO2 SA 0.22 12
COF(ERDN) TEOA 0.212 16
N3-COFc TEOA 0.163 23
COF-OH-0 AA 0.11 This work
N1-COFc TEOA 0.1 23
A-TEBPY-COF TEOA 0.098 27
N1-COF TEOA 0.09 19
BT-COF AA 0.076 11
N0-COF TEOA 0.023 19
[a] The reactions were performed with Pt as co-catalyst; [b] The co-catalyst is MoS2; [c] 
The co-catalyst is [Co(dmgH)2pyCl]; [d] The co-catalyst is [Co(dmgBF2)2(OH2)2]; AA: 
Ascorbic acid; SA: Sodium ascorbate; TEOA: triethanolamine.
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