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Section S1. Preparation of Fe3O4 nanoparticles.

The synthetic process of Fe3O4 nanoparticles was prepared as follows: FeCl2·4H2O (0.078 mol L−1, 50.0 

mL) and FeCl3·6H2O (0.046 mol L−1, 50.0 mL) solutions were mixed in a three-necked round bottom flask 

(250 mL) with stirring under a nitrogen atmosphere at 25 ºC for 30 min. NH3·H2O (4.0 mL, 25 wt%) was 

added in the flask with continuous stirring at 25 ºC for 1 h. With the reaction completed, the Fe3O4 

nanoparticles were separated from the resultant mixture solution by a magnet, washed with deionized 

water and formamide for three times, and dispersed in formamide (100 mL).

Section S2. Characterizations and Measurements.

The morphology of MoS2 nanosheets and phase-change microcapsules was characterized by a field 

emission scanning electron microscope (SEM, SU8020, Hitachi, Japan) with an acceleration voltage of 15 

kV. The SEM equipped with an energy-dispersive X-ray (EDX) spectrometer (INCAX-Act, Oxford, UK) 

was employed to analyze the surface elemental composition and mapping images of phase-change 

microcapsules. The microstructure of MoS2 nanosheets and phase-change microcapsules was observed by 

a field emission transmission electron microscope (TEM, JEM-2100F, JEOL, Japan) operated with an 

accelerating voltage of 200 kV, and the selected area electron diffraction (SAED) of MoS2 nanosheets was 

characterized by the same instrument. The Fourier-transform infrared (FTIR) spectra of pure n-docosane 

and phase-change microcapsules were determined by an infrared spectrometer (Nicolet iS5, Thermo 

Scientific, USA). The X-ray diffraction (XRD) pattern was characterized by X–ray diffractometer (D/max 

2500, Rigaku, Japan) at 40 mA and 40 kV with Cu Kα radiation (λ =1.5418 Å) and a scan speed of 10° 

min–1. The X-ray photoelectron spectroscopy (XPS) analysis of phase-change microcapsules was carried 

out through X–ray photoelectron spectrometer (ESCALAB 250Xi, Thermo Scientific, USA) equipped 

with a focused monochromatized Al Kα radiation source. The shape stability of pure n-docosane and 

phase-change microcapsules was characterized by heating on a high-precision electronic hot plate at 120 
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ºC. The appearances of the samples were monitored by a digital camera. Thermal analysis was performed 

to evaluate the phase-change behavior of pure n-docosane and phase-change microcapsules by a 

differential scanning calorimeter (DSC, Q20, TA Instruments, USA) under a ramp rate of 10 ºC min−1. 

Phase-change temperatures, including melting temperature (Tm, °C), crystallization temperature (Tc, ºC), 

and rotator phase-transition temperature (TR, °C) were directly obtained from the DSC thermograms. 

Phase-change enthalpies, including melting enthalpy (ΔHm, J g−1) and crystallization enthalpy (ΔHc, J g−1) 

were obtained by integrating the endothermic and exothermic peaks in the DSC thermograms. The 

encapsulation parameters were determined by the phase-change enthalpies based on the following 

equations.
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where Een (%) is the encapsulation ratio, Ees (%) is the energy-storage efficiency, Ces (%) is the energy-

storage capability, ΔHm, docosane (J g−1) and ΔHc, docosane (J g−1) are the melting enthalpy and crystallization 

enthalpy of pure n-docosane, respectively, and ΔHm, microcapsules (J g−1) and ΔHc, microcapsules (J g−1) are the 

melting and crystallization enthalpies of phase-change microcapsules, respectively. The thermal 

conductivity was characterized by a thermal conductivity tester (HS-DR-5, HESHENG, China) with an 

accuracy of  3%. The dynamic water contact angle was measured by a water angle measuring instrument 

(JY-82C, Dingsheng, China) with a water droplet volume of 16 μL. The absorption spectra of phase-

change microcapsules were characterized by an UV-Vis-NIR spectrophotometer (UV-3600Plus, 

Shimadzu, Japan) with a test range of 220−2,500 nm. The photothermal conversion performance was 

evaluated by a Xenon arc lamp as a light source (Irradiation intensity: 1000 W m−2). The temperature 

evolution during the photothermal conversion process was determined by a k-type thermocouple.
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Fig. S1. Schematic stripping process of MoS2 nanosheets.
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Fig. S2. SEM images of (a) MoS2 powders and (b) MoS2 multilayered nanosheets.
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Fig. S3. Plots of particle-size distribution of (a) Fe3O4/SiO2-MEPCM and (b) MoS2-MEPCM.
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Fig. S4. High-resolution core-level XPS spectra of Fe3O4/SiO2-MEPCM.
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Fig. S5. EDX pattern and elemental mapping images of Fe3O4/SiO2-MEPCM.
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Fig. S6. Mass change of MoS2-MEPCM in the water body at 50 ºC.
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Fig. S7. Mass change of MoS2-MEPCM evaporator during the cyclic washing process.
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Fig. S8. UV-Vis-NIR absorption spectra of MoS2-MEPCM before and after the recycling 

experiment.
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Fig. S9. DSC thermograms of the MoS2-MEPCM obtained after every washing process.
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Fig. S10. Phase-change parameters of MoS2-MEPCM obtained after every washing process.
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Fig. S11. FTIR spectra of MoS2-MEPCM before and after the recycling experiment.
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Fig. S12. XRD patterns of MoS2-MEPCM before and after the recycling experiment.
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Fig. S13. Water evaporation production of MoS2-MEPCM-based evaporator during 15 days of 

natural sunlight illumination.
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Fig. S14. Evaporation rate of MoS2-MEPCM-based evaporator during 15 days of natural sunlight 

illumination.
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Table S1. Detection results of water quality for purified water

Detection item Numerical value

Anion synthetic detergent (mg L−1) < 0.1

Volatile organic compound (mg L−1) < 0.002

Coliform colony (L−1) Not detected

pH value  6.95
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