Supporting Information

Theoretical exploration on molecular packing and charge transfer mechanism of organic solar cells based on PM6:Y6

Chongchen Xiang,^{†a} Qiming Zhao,^{†a} Wanqiang Liu,^{*a} Jiamin Cao,^a Yingping Zou,^b and Hu Zhou^{*a} a. School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan 411201, China

b. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

*E-mail: wanqiangliu@hnust.edu.cn (W Liu); Zhouhu2006@163.com (H Zhou)

Table S1 Vertical excitation energy(E/eV), excitation wavelength(λ /nm) and oscillator intensity(f) of thefirst twenty excited states of Dimer-1

		2					
Dimer-1	E/eV	λ/nm	f		E/eV	λ/nm	f
S_1	1.3362	927.90	0.0017	S ₁₁	2.0072	617.69	0.0232
S_2	1.4221	871.82	0.0045	S ₁₂	2.0236	612.69	0.0027
S_3	1.5675	790.98	0.0017	S ₁₃	2.0264	611.83	0.0197
S_4	1.6369	757.42	0.9465	S_{14}	2.0613	601.50	0.0002
S_5	1.6507	751.08	0.0034	S_{15}	2.0708	598.73	0.0032
S_6	1.8032	687.57	0.0010	S ₁₆	2.1096	587.72	0.0266
S_7	1.8252	679.30	0.8509	S_{17}	2.1160	585.95	0.0022
S_8	1.8402	673.74	0.0006	S_{18}	2.1200	584.82	0.0307
S_9	1.8784	660.04	0.5571	S_{19}	2.1644	572.84	0.0891
\mathbf{S}_{10}	1.9906	622.84	0.1214	S ₂₀	2.1750	570.06	0.0187

Table S2 Vertical excitation energy(E/eV), excitation wavelength(λ /nm) and oscillator intensity(f) of the

first twenty excited states of Dimer-2

Dimer-2	E/eV	λ/nm	f		E/eV	λ/nm	f
S ₁	1.4010	884.97	0.0021	S_{11}	2.0030	618.98	0.0014
S_2	1.5347	807.85	0.0187	S_{12}	2.0635	600.86	0.2232
S_3	1.6638	745.20	0.0737	S ₁₃	2.0758	597.28	0.0196
S_4	1.7083	725.76	0.0507	S_{14}	2.0946	591.93	0.0047
S_5	1.7491	708.87	0.1443	S_{15}	2.1040	589.27	0.0046
S_6	1.8079	685.81	0.4248	S_{16}	2.1224	584.18	0.0341
S_7	1.8342	675.97	1.3623	S_{17}	2.1281	582.61	0.0183
S_8	1.8735	661.79	0.3332	S_{18}	2.1616	573.58	0.0881
S_9	1.8968	653.64	0.0815	S ₁₉	2.1978	564.14	0.0104
S_{10}	1.9295	642.58	0.5797	S_{20}	2.2356	554.58	0.0020

Inst twenty excited states of Dimer-5							
Dimer-3	E/eV	λ/nm	f		E/eV	λ/nm	f
S_1	1.2166	1019.13	0.0061	S_{11}	1.9479	636.50	0.0812
S_2	1.4094	879.68	0.0121	S ₁₂	1.9634	631.46	0.1150
S_3	1.5419	804.08	0.0080	S ₁₃	1.9991	620.19	0.0305
S_4	1.6273	761.90	0.5684	S_{14}	2.0235	607.51	0.0822
S_5	1.6570	748.23	0.3998	S_{15}	2.0427	606.96	0.2030
S_6	1.7229	719.63	1.6724	S ₁₆	2.0427	606.96	0.2030
S_7	1.7326	715.61	0.0715	S_{17}	2.0569	602.78	0.0071
S_8	1.7616	703.81	0.0536	S_{18}	2.0747	597.59	0.1775
S_9	1.8149	683.15	0.0114	S ₁₉	2.1646	572.77	0.1369
S ₁₀	1.8599	666.61	0.1068	S ₂₀	2.1963	564.51	0.0254

Table S3 Vertical excitation energy(E/eV), excitation wavelength(λ/nm) and oscillator intensity(f) of the first twenty excited states of Dimer-3

Table S4 Vertical excitation energy(E/eV), excitation wavelength(λ/nm) and oscillator intensity(f) of the

first twenty excited states of Dimer-4								
Dimer-4	<i>E</i> /eV	λ/nm	f		E/eV	λ/nm	f	
\mathbf{S}_1	1.3038	950.95	0.0005	S ₁₁	2.0217	613.26	0.0002	
S_2	1.4561	851.49	0.0006	S ₁₂	2.0538	603.67	0.1244	
S_3	1.6237	763.58	0.0003	S ₁₃	2.0633	600.90	0.2817	
S_4	1.7587	704.98	0.0069	S_{14}	2.0714	598.54	0.0105	
S_5	1.7747	698.63	0.0294	S_{15}	2.0817	595.58	0.0492	
S_6	1.8072	686.06	2.7824	S_{16}	2.1499	576.70	0.0004	
S_7	1.8346	675.80	0.4801	S_{17}	2.2195	558.62	0.0009	
S_8	1.8635	665.35	0.0002	S_{18}	2.2458	552.08	0.1973	
S_9	1.9835	625.07	0.0000	S ₁₉	2.2516	550.65	0.0003	
S ₁₀	1.9911	622.71	0.0001	S ₂₀	2.2536	550.15	0.0682	

Figure S1. The hole-electron (blue-orange) density distribution of S_1 state, CT_X state, and CT_1 state of Dimer-3.

Figure S2. The hole-electron (blue-orange) density distribution of S_1 state, CT_X state, and CT_1 state of Dimer-4.

Figure S3. UV-Vis spectroscopy of Dimer-2 and Dimer-4.

of Dimer-1								
Dimer-1	$\lambda_{electron}/eV$	$\Delta G_{ m electron}/ m eV$	$k_{\rm CT-electron}/{\rm s}^{-1}$	λ_{hole}/eV	$\Delta G_{ m hole}/ m eV$	$k_{\rm CT-hole}/{\rm s}^{-1}$		
CT_1	0.9804	-0.5340	2.68×10 ¹¹	0.8808	-0.2805	3.82×10 ¹⁰		
CT_2	0.9804	-0.6539	1.15×10^{12}	0.8808	-0.4636	5.11×10 ¹¹		
CT_3	0.9804	-0.5438	2.67×10^{11}	0.8808	-0.6236	8.98×10 ¹¹		
S_1	0.9804	-0.5706	1.74×10^{15}	0.8808	-0.6393	5.09×10 ¹⁵		
CT_4	0.9804	-0.5830	7.63×10^{11}	0.8808	-0.6828	2.50×10^{12}		
S_2	0.9804	-0.5528	4.64×10^{10}	0.8808	-0.6399	1.58×10^{11}		
S_3	0.9804	-0.5682	1.60×10^{15}	0.8808	-0.6541	5.17×10 ¹⁵		

Table S5 Electron transfer recombination energy($\lambda_{electron}/eV$), electron transfer Gibbs free energy($\Delta G_{electron}/eV$), electron transfer rates($k_{CT-electron}/s^{-1}$), hole transfer recombination energy(λ_{hole}/eV), hole transfer Gibbs free energy($\Delta G_{hole}/eV$), hole transfer rates($k_{CT-hole}/s^{-1}$) for the first seven excited states

Table S6 Electron transfer recombination energy($\lambda_{electron}/eV$), electron transfer Gibbs free energy($\Delta G_{electron}/eV$), electron transfer rates($k_{CT-electron}/s^{-1}$), hole transfer recombination energy(λ_{hole}/eV), hole transfer Gibbs free energy($\Delta G_{hole}/eV$), hole transfer rates($k_{CT-hole}/s^{-1}$) for the first seven excited states

of Dimer-2							
Dimer-2	$\lambda_{electron}/eV$	$\Delta G_{ m electron}/ m eV$	$k_{\rm CT-electron}/{\rm s}^{-1}$	$\lambda_{\rm hole}/{ m eV}$	$\Delta G_{ m hole}/ m eV$	$k_{\rm CT-hole}/{\rm s}^{-1}$	
CT_1	1.0307	-0.4573	8.46×10 ¹¹	0.8562	-0.3343	9.36×10 ¹¹	
CT_2	1.0307	-0.6054	7.43×10^{12}	0.8562	-0.4242	5.39×10 ¹²	
CT_3	1.0307	-0.5390	2.31×10 ¹³	0.8562	-0.5207	6.89×10 ¹³	
CT_4	1.0307	-0.5806	1.71×10^{15}	0.8562	-0.6471	7.73×10 ¹⁵	
S_1	1.0307	-0.5802	1.77×10^{15}	0.8562	-0.6415	7.80×10^{15}	
S_2	1.0307	-0.5826	2.68×10^{14}	0.8562	-0.6558	1.24×10^{15}	
S_3	1.0307	-0.5816	1.17×10^{15}	0.8562	-0.7121	6.78×10^{15}	

Table S7 Electron transfer recombination energy($\lambda_{\text{electron}}/\text{eV}$), electron transfer Gibbs free energy($\Delta G_{\text{electron}}/\text{eV}$), electron transfer rates($k_{\text{CT-electron}}/\text{s}^{-1}$), hole transfer recombination energy($\lambda_{\text{hole}}/\text{eV}$), hole transfer Gibbs free energy($\Delta G_{\text{hole}}/\text{eV}$), hole transfer rates($k_{\text{CT-hole}}/\text{s}^{-1}$) for the first seven excited states of Dimer-3

Dimer-3	$\lambda_{electron}/eV$	$\Delta G_{ m electron}/ m eV$	$k_{\rm CT-electron}/{\rm s}^{-1}$	$\lambda_{\rm hole}/{\rm eV}$	$\Delta G_{ m hole}/ m eV$	$k_{\rm CT-hole}/{\rm s}^{-1}$
CT ₁	1.0121	-0.4537	4.08×10 ¹¹	0.8036	-0.4558	2.12×10 ¹²
CT_2	1.0121	-0.5322	1.04×10^{12}	0.8036	-0.5700	5.53×10 ¹²
CT_3	1.0121	-0.4858	5.69×10 ¹¹	0.8036	-0.6679	7.32×10^{12}
S_1	1.0121	-0.5055	3.07×10 ¹⁴	0.8036	-0.6895	3.47×10^{15}
S_2	1.0121	-0.5770	1.11×10^{14}	0.8036	-0.7518	7.46×10^{14}
S_3	1.0121	-0.5581	1.37×10^{15}	0.8036	-0.7891	1.11×10^{16}
S_4	1.0121	-0.6556	1.17×10^{15}	0.8036	-0.8172	4.45×10 ¹⁵

Table S8 Electron transfer recombination energy($\lambda_{\text{electron}}/\text{eV}$), electron transfer Gibbs free energy($\Delta G_{\text{electron}}/\text{eV}$), electron transfer rates($k_{\text{CT-electron}}/\text{s}^{-1}$), hole transfer recombination energy($\lambda_{\text{hole}}/\text{eV}$), hole transfer Gibbs free energy($\Delta G_{\text{hole}}/\text{eV}$), hole transfer rates($k_{\text{CT-hole}}/\text{s}^{-1}$) for the first seven excited states

of Dimer-4							
Dimer-4	$\lambda_{\text{electron}}/eV$	$\Delta G_{ m electron}/ m eV$	$k_{\rm CT-electron}/{\rm s}^{-1}$	$\lambda_{\rm hole}/{ m eV}$	$\Delta G_{ m hole}/ m eV$	$k_{\rm CT-hole}/{\rm s}^{-1}$	
CT_1	1.0641	-0.4712	1.37×10^{10}	0.8496	-0.3998	3.76×10 ¹⁰	
CT_2	1.0641	-0.5376	1.20×10^{10}	0.8496	-0.5344	5.44×10^{10}	
CT_3	1.0641	-0.4291	1.63×10^{09}	0.8496	-0.5623	2.82×10^{10}	
CT_4	1.0641	-0.4312	5.98×10^{10}	0.8496	-0.5690	1.06×10^{12}	
CT ₅	1.0641	-0.4633	4.00×10 ¹¹	0.8496	-0.5583	4.59×10 ¹²	
S_1	1.0641	-0.4619	4.72×10^{14}	0.8496	-0.7096	1.16×10^{16}	
S_2	1.0641	-0.5333	2.95×10^{14}	0.8496	-0.7592	3.95×10 ¹⁵	