Supporting Information

Constructing FePSe₃-FeSe₂ heterojunctions uniformly in Ketjen Black carbon matrix for superior potassium ion batteries

Bi-Cui Chen¹, Xian Lu¹, Hou-Yang Zhong¹, Pei-Wen Huang¹, Ya-Nan Wu¹, Si-Yu Xu¹, Ke-Zhao Du^{*,1} and Xiao-Hui Wu^{*,1,2}

1 College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer

Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented

Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Elements	Mass percentage (%)	Molar percentage (%)	Molar ratio of
			FePSe ₃ and FeSe ₂
Fe	9.82	0.175	
Р	4.77	0.154	7.5: 1.0
Se	39.42	0.499	-

Table S1. The results of ICP-OES of FePSe₃-FeSe₂/C composite.

Figure S1. (A-B) SEM images of KB carbon. (C-D) SEM images and (E) HRTEM

image of FeSe₂/C. (F) SEM image of FePSe₃/C.

Figure S2. (A) TEM image, (B) SAED pattern, (C) TEM image and (D) & (E) HRTEM images of FePSe₃/C. In more details, points 1-4 marked in green in the SAED pattern correspond to the (-1 - 1 - 6), (0 - 1 - 5), (1 - 1 - 4) and (0 0 0) planes of FePSe₃, respectively.

Figure S3. HAADF-STEM image with the corresponding EDS images of FePSe₃/C.

Figure S4. The high-resolution SEM images of FePSe₃-FeSe₂/C.

Figure S5. The TEM image of the side-view of FePSe₃-FeSe₂/C.

Figure S6. HAADF-STEM image with the corresponding EDS images of the side-view

of FePSe₃-FeSe₂/C.

Figure S7. (A) SAED pattern of FePSe₃-FeSe₂/C. (B) The FeSe₂ crystal planes and (C) the FePSe₃ crystal planes corresponding to the diffraction spots in SAED.

This SAED pattern can be readily indexed as the 2D in-plane reflections of FePSe₃ with (-1 -1 1) zone axis direction and FeSe₂ with $(1 \ 0 \ 0)$ zone axis direction. In more details, points 1-3 marked in green correspond to the (0 -1 -1), (1 -2 -1), and $(1 -1 \ 0)$ planes of FePSe₃, respectively, and the lattice planes of FeSe₂ represented by the red marked dots 1-3 in turn are $(0 \ 3 \ 1)$, $(0 \ 3 \ 3)$, and $(0 \ 0 \ 2)$, respectively.

Figure S8. PXRD patterns of FePSe₃-1 and FePSe₃-2.

Figure S9. (A) The quartz tubes contain FePSe₃-FeSe₂/C, FePSe₃/C, FePSe₃-1 and FePSe₃-2 products in the order from left to right. (B) FePSe₃-FeSe₂/C products. (C) FePSe₃/C products. (D) FePSe₃-1 products. (E) FePSe₃-2 products.

Figure S10. SEM images of (A-C) FePSe₃-1 and (D-F) FePSe₃-2.

Figure S11. (A) N_2 adsorption-desorption isotherms and (B) the corresponding pore size distribution of KB carbon.

Figure S12. XPS survey spectra of (A) FePSe₃-FeSe₂/C and (B) FePSe₃/C. (C) High-resolution XPS C 1s spectra of FePSe₃-FeSe₂/C and FePSe₃/C.

Table S2. Brunauer Emmett Teller (BET) specific surface areas of KB, FePSe₃-

FeSe₂/C and FePSe₃/C.

Sample	KB	FePSe ₃₋ FeSe ₂ /C	FePSe ₃ /C
BET Surface Area (m ² /g)	1263.9	107.8	18.9

Figure S13. CV curves for initial three cycles of FePSe₃/C electrode for PIBs at 0.1 mV s⁻¹ between 0.005 and 2.8 V.

Table S3.	The electrochemica	l reactions c	of FePSe ₃ -FeSe ₂ /	C and $FeSe_2/C$	with K^{+} c	on
anode.						

Sample	Potential	Reaction
FePSe ₃ -	Discharged to 1.40 V	$FePSe_3 + 6K^+ + 6e^- \rightarrow Fe + P + 3K_2Se$
FeSe ₂ /C	Discharged to 1.20 V	$FeSe_2 + 4K^+ + 4e^- \rightarrow Fe + 2K_2Se$
	Discharged to 0.48V	$3P + 4K^+ + 4e^- \rightarrow K_4P_3$
	Charged to 1.04 V	$2Fe + 2K_2Se \rightarrow FeSe_2 + 4K^+ + 4e^-$
	Charged to 1.74 V	$K_4P_3 + 9K_2Se + 3Fe \rightarrow 3FePSe_3 + 22K^+ + 22e^-$
FePSe ₃ /C	Discharged to 1.40 V	$FePSe_3 + 6K^+ + 6e^- \rightarrow Fe + P + 3K_2Se$
	Discharged to 0.32 V	$3P + 4K^+ + 4e^- \rightarrow K_4P_3$
	Charged to 1.08 V	$K_4 P_3 \rightarrow 3P + 4K^+ + 4e^-$
	Charged to 1.80 V	$Fe + P + 3K_2Se \rightarrow FePSe_3 + 6K^+ + 6e^-$

Figure S14. Charge–discharge profiles of (A) FePSe₃-FeSe₂/C and (B) FePSe₃/C at the

current density of 0.1 A g^{-1} .

Figure S15. (A) TEM image, (B) HAADF-STEM image with the corresponding EDS images, (C) the SAED pattern and (D) HRTEM image of $FePSe_3$ - $FeSe_2/C$ at the current density of 0.1 A g⁻¹ after 260 cycles.

Figure S16. (A) Cycling performance, (B) rate performance and (C) long-term cyclic performance of FeSe₂/C electrodes in the voltage range of 0.005-2.8 V.

Figure S17. (A) Cycling performance of FePSe₃-1 and FePSe₃-2 electrodes at the current density of 0.1 A g⁻¹ in the range of 0.005-2.8 V. (B) Rate performance of FePSe₃-1 and FePSe₃-2 electrodes at various current densities from 0.05 to 2.0 A g⁻¹. (C) Long-term cyclic performance of FePSe₃-1 and FePSe₃-2 electrodes at 1.0 A g⁻¹.

Figure S18. The galvanostatic charge/discharge profiles of $FeSe_2/C$ at the current density of 0.1 A g^{-1} .

Material	Current	Cycle	Capacity	Mass	Calculate	Ref
	density	number	(mA h g ⁻¹)	loading	based on	
	(A g ⁻¹)			(mg cm ⁻²)		
FePSe ₃ -	0.1	100	352	1.0	•,	This
FeSe ₂ /C	1.0	3700	224	0.7	- composite	work
FeSe ₂ /NC	1.0	250	301	1.0	composite	1
FeSe ₂ @NC	0.5	100	280	1.0-1.5	composite	2
FeSe ₂	0.4	80	441	1.0-1.2	composite	3
ZnSe-	0.05	100	262	/		4
FeSe ₂ /RGO	0.03	100	303	/	composite	
FeSe ₂ /N-C	0.2	100	256	1.0	composite	5
FeSe ₂ @C NBs	0.1	700	221	/	composite	6
f-FePSe ₃ /CNT	0.5	1000	223	0.8	composite	7

Table S4. Comparison of the cycling performance of FePSe₃-FeSe₂/C and other FeSe₂based or FePSe₃-based materials for PIBs anodes.

Figure S19. The galvanostatic discharge profiles of FePSe₃/C at the 2^{nd} , 8^{th} , 60^{th} and 100^{th} cycles at 0.1 A g⁻¹ in the voltage range of 0.005-2.8 V.

	2 nd cycle	8 th cycle	60 th cycle	100 th cycle	
Voltage range (V)	Specific capacity (mA h g ⁻¹)				
0.005-1.00	260.2	201.6	189.1	179.9	
1.00-1.58	73.7	72.0	77.0	78.7	
1.58-2.80	51.9	63.6	92.0	93.7	
Full range	385.8	337.2	358.1	352.3	

Table S5. The specific capacities of FePSe₃-FeSe₂/C electrode in three voltage ranges.

Table S6. The capacity increments of FePSe₃-FeSe₂/C electrode in three voltage

ranges.

	∆C ₈₋₂	△ C ₆₀₋₈	△ C ₁₀₀₋₆₀		
Voltage range (V)	Specific capacity (mA h g ⁻¹)				
0.005-1.00	-58.6	-12.5	-9.2		
1.00-1.58	-1.7	5.0	1.7		
1.58-2.80	11.8	28.4	1.7		
Full range	-48.5	20.9	-5.8		

Figure S20. Cycling performance of FePSe₃-FeSe₂/C at a current density of 1.0 A g^{-1} in different cycle intervals: (A) from the 2^{nd} to the 250^{th} cycle, (B) from the 250^{th} to the 2000^{th} cycle, (C) from the 2000^{th} to the 2800^{th} cycle and (D) from the 2800^{th} to the 3700^{th} cycle.

Figure S21. The galvanostatic charge/discharge profiles of $FePSe_3$ - $FeSe_2/C$ at the 2nd, 250th, 2000th, 2800th and 3700th cycles at 1.0 A g⁻¹ in 0.005-2.8 V.

Figure S22. Side-view (up) and top-view (down) of built models of (A) FePSe₃, (B)

FeSe₂, and (C) FePSe₃-FeSe₂.

Figure S23. Three slices of electron density map of (A) FePSe₃, (B) FeSe₂, and (C) FePSe₃-FeSe₂.

Figure S24. CV curves of FePSe₃/C at different scan rates from 0.8 to 2.5 mV s⁻¹.

Figure S25. Equivalent circuit for measured EIS spectra.

Figure S26. (A) Cycling performance, (B) rate performance and (C) long-term cyclic performance of PTCDA half cell in the voltage range of 1.5-3.5 V.

References

1. Liu, Y. Z.; Yang, C. H.; Li, Y. P.; Zheng, F. H.; Li, Y. J.; Deng, Q.; Zhong, W. T.; Wang, G.; Liu, T. Z., FeSe₂/nitrogen-doped carbon as anode material for Potassiumion batteries. *Chemical Engineering Journal* **2020**, *393*, 124590.

2. Wu, H.; Lu, S.; Xu, S.; Zhao, J.; Wang, Y.; Huang, C.; Abdelkader, A.; Wang, W. A.; Xi, K.; Guo, Y.; Ding, S.; Gao, G.; Kumar, R. V., Blowing Iron Chalcogenides into Two-Dimensional Flaky Hybrids with Superior Cyclability and Rate Capability for Potassium-Ion Batteries. *ACS Nano* **2021**, *15* (2), 2506-2519.

3. Xin, W.; Chen, N.; Wei, Z.; Wang, C.; Chen, G.; Du, F., Self-Assembled FeSe₂ Microspheres with High-Rate Capability and Long-Term Stability as Anode Material for Sodium- and Potassium-Ion Batteries. *Chemistry* **2021**, *27* (11), 3745-3752.

Yuan, J.; Liu, W.; Zhang, X.; Zhang, Y.; Yang, W.; Lai, W.; Li, X.; Zhang, J.; Li, X., MOF derived ZnSe-FeSe₂/RGO Nanocomposites with enhanced sodium/potassium storage. *Journal of Power Sources* 2020, *455*, 227937.

5. Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. G., Nature of FeSe₂/N-C Anode for High Performance Potassium Ion Hybrid Capacitor. *Advanced Energy Materials* **2020**, *10* (4), 1903277.

Liu, C.; Li, Y. J.; Feng, Y. H.; Zhang, S.; Lu, D.; Huang, B. Y.; Peng, T.; Sun, W.
W., Engineering of yolk-shelled FeSe₂@nitrogen-doped carbon as advanced cathode for potassium-ion batteries. *Chinese Chemical Letters* 2021, *32* (11), 3601-3606.

7. Huang, Y.-F.; Yang, Y.-C.; Tuan, H.-Y., Construction of strongly coupled fewlayer FePSe₃-CNT hybrids for high performance potassium-ion storage devices. *Chemical Engineering Journal* **2023**, *451* (4), 139013.