Supporting Information

Humidity Enhanced Silicon-based Semiconductor Tribovoltaic

Direct-Current Nanogenerator

Zhaozheng Wang,^{‡ab} Likun Gong,^{‡ab} Sicheng Dong,^{‡ab} Beibei Fan,^{ac} Yuan Feng,^{ac} Zhi Zhang,^{ab} and Chi Zhang *^{abc}

^a CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
^b School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
^c Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

* Corresponding author.

E-mail addresses: czhang@binn.cas.cn (C. Zhang).

‡These authors contributed equally to this work.

The PDF file includes: Supplementary Materials

Table S1. Default parameters of the experiment setup.

Table S2. Comparison of the charge density with that in the previous humidity-resistive TENGs.

Figure S1. The humidity control and electrical output measuring platform.

Figure S2. Impedance-matching curve of TVNG based on n-Si/Cu in RH 30% humidity.

Figure S3. Impedance-matching curve of TVNG based on n-Si/Cu in RH 90% humidity.

Figure S4. Open-circuit voltage of TVNG based on n-Si/C between RH 30% and RH 90% humidity.

Figure S5. Short-circuit current of TVNG based on n-Si/C between RH 30% and RH 90% humidity.

Figure S6. Power density of the TVNG based on n-Si/C between RH 30% and RH 90% humidity. Related Reference [1-6] in Supplementary Materials.

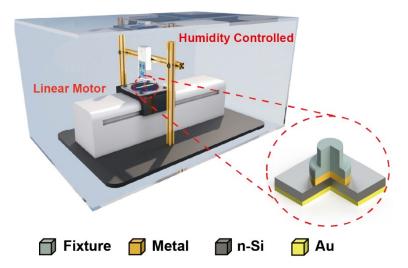


Figure S1. The humidity control and electrical output measuring platform.

Materials pair	Sliding velocity	Sliding block area	Pressure	Resistivity
Cu(C)/n-type doped silicon	10 cm/s	2 cm^2	5 N	0.1-0.5 Ω·cm

Table S2. Comparison of the charge density with that in the previous	
humidity-resistive TENGs ^[1-6]	

Materials	AC/DC	Charge density(mC/m ²)	Humidity (RH)	Internal Resistance (kΩ)	Ref.		
Wood+FEP	AC	0.01	75%	-	[1]		
FZCT+PTFE	AC	0.09	80%	1000	[2]		
PTFE+Fur	AC	0.1152	90%	18000	[3]		
PDMS+Cu	AC	0.175	90%	10000	[4]		
PVDF+PVA	AC	0.244	90%	-	[5]		
Cu+PVC/	DC	2.97	90%	-	[6]		
Cu+Si	DC	12.6	90%	50	This work		

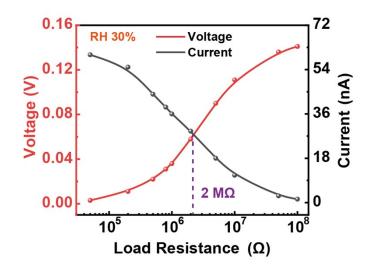
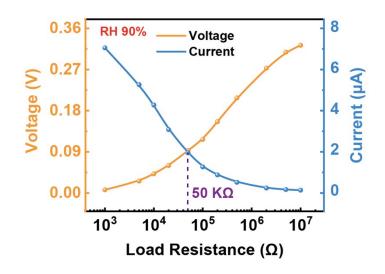



Figure S2. Impedance-matching curve of TVNG

based on n-Si/Cu in RH 30% humidity.

Figure S3. Impedance-matching curve of TVNG

based on n-Si/Cu in RH 90% humidity.

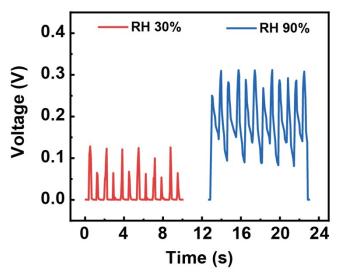


Figure S4. Open-circuit voltage of TVNG based on n-Si/C between RH 30% and RH 90% humidity.

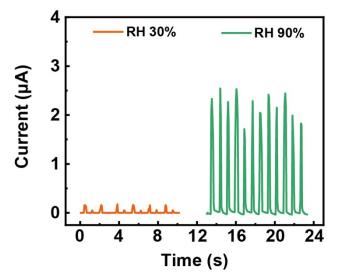


Figure S5. Short-circuit current of TVNG based on n-Si/C between RH 30% and RH 90% humidity.

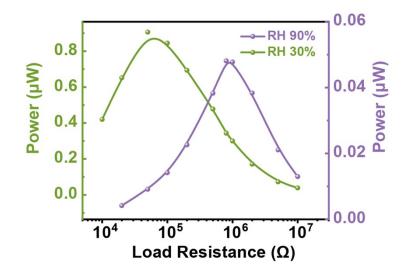


Figure S6. Power density of the TVNG based on n-Si/C between RH 30% and RH 90% humidity.

References

- [1] C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu, S. Wang, S. Nie, Nano Energy, 83 (2021).
- [2] N. Jayababu, D. Kim, Nano Energy, 82 (2021).
- [3] P. Chen, J. An, S. Shu, R. Cheng, J. Nie, T. Jiang, Z.L. Wang, Adv. Energy. Mater, 11 (2021).
- [4] R. Wen, J. Guo, A. Yu, J. Zhai, Z.1. Wang, Adv. Funct. Mater, 29 (2019).
- [5] D. Liu, J. Liu, M. Yang, N. Cui, H. Wang, L. Gu, L. Wang, Y. Qin, Nano Energy, 88 (2021).
- [6] L. Liu, Z. Zhao, Y. Li, X. Li, D. Liu, S. Li, Y. Gao, L. Zhou, J. Wang, Z.L. Wang, Small, (2022) e2201402.