Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Figure S1 XRD patterns of the synthesized LLZ-CaBi powder.

Figure S2 TG-DTA curves of the synthesized Li₃BO₃ powder in a 20% O₂-Ar atmosphere.

Figure S3 SEM images and elemental mapping of (a) LLZ-Bi an (b) LLZ-CaBi0.1 (x=0.1) and

Li₃BO₃ composite electrolytes sintered at 750 °C.

Figure S4 HAADF image and EELS mapping of LLZ-CaBi0.1 (x=0.1) and Li₃BO₃ composite

electrolyte sintered at 750 °C.

Figure S5 SEM images and elemental mappings of (a) LLZ-CaBi0.1 (x=0.1), (b) LLZ-CaBi0.3

(x=0.3), and (c) LLZ-CaBi0.5 (x=0.5) and Li₃BO₃ composite electrolytes sintered at 750 °C.

Figure S6 Typical impedance plots at 298 K for LLZ-CaBi0.1 (x=0.1) and Li₃BO₃ composite electrolytes sintered at 750 °C.

Figure S7 Arrhenius plots of LLZ-CaBi with (a) x=0–0.1 and (b) x=0.12–0.5 and Li₃BO₃ composite electrolytes sintered at 750 °C over the temperature range of 240–320 K.

Figure S8 Dependence of (a) bulk and (b) grain boundary activation energy on LLZ-CaBi and

Li₃BO₃ composite electrolytes sintered at 750 °C.

Figure S9 Raman spectra of LLZ-CaBi and Li₃BO₃ composite electrolytes sintered at 750 °C.

F igure S10 Impedance plots at 333K of (a) SUS plate|PEO|SUS plate (b) Li|PEO|Li (c) SUS

plate|PEO|LLZ-CaBi0.1+Li₃BO₃|Au. The inset is the equivalent circuit used for fitting.

 CPE_b CPE_{gb} x in R_b R_{gb} ω_b τ_b ω_{gb} τ_{gb} (rad/s) LLZ-CaBi (Ω) (rad/s) (Ω) **(**\$**) (F) (**\$**) (F)** $\mathbf{x} = \mathbf{0}$ 427 1.7×10⁻¹⁰ 1.4×10^{7} 7.4×10-8 9.2×10⁻⁹ 9.6×10⁻⁶ 1047 1.0×10^{5} x = 0.02 497.7 1.3×10⁻¹⁰ 1.6×10^{7} 6.5×10⁻⁸ 570.5 1.0×10^{-8} 1.7×10^{5} 5.8×10⁻⁶ 2.1×10^{-10} 6.6×10⁻⁸ x = 0.04 1.5×10^{7} 1.4×10^{-8} 2.1×10^{5} 4.8×10⁻⁶ 315.5 336.8 x = 0.06 307.7 3.0×10⁻¹⁰ 1.1×10^{7} 9.1×10⁻⁸ 285.3 1.6×10^{-8} 2.2×10^{5} 4.6×10⁻⁶ 3.7×10⁻¹⁰ 7.1×10⁻⁸ 4.5×10⁻⁶ 1.4×10^{7} 2.3×10⁻⁸ 2.2×10⁵ x = 0.08 192.4 195.6 3.5×10^{-10} 6.6×10⁻⁸ 2.5×10^{5} 4.1×10⁻⁶ x = 0.10187.4 1.5×10^{7} 159 2.6×10⁻⁸ 4.5×10⁻⁸ 1.7×10⁻⁸ 4.6×10⁻⁶ x = 0.12 2.5×10^{-10} 2.2×10^{7} 2.2×10^{5} 181.0 267.2 5.6×10⁻⁶ x = 0.15 3.3×10⁻¹⁰ 1.7×10^{7} 6.1×10⁻⁸ 2.3×10⁻⁸ 1.8×10^{5} 185.2 241 x = 0.20 244.4 3.8×10⁻¹⁰ 1.1×10^{7} 9.2×10⁻⁸ 256.9 4.4×10^{-8} 8.8×10^{4} 1.1×10⁻⁵ 6.1×10⁻¹⁰ 1.9×10⁻⁷ 1.1×10⁻⁸ 9.9×10^{4} 1.0×10⁻⁵ x = 0.30 5.2×10⁶ 316.4 947.5 6.2×10⁻⁸ 3.5×10⁻⁵ x = 0.40 383.9 9.2×10⁻¹⁰ 2.8×10⁶ 3.5×10⁻⁷ 569.2 2.8×10^{4} 8.0×10^{-10} 4.1×10⁻⁷ 7.0×10⁻⁸ 7.2×10⁻⁵ x = 0.50 518.5 2.4×10⁶ 1.4×10^{4} 1021

Table S1 Parameters obtained from fitting impedance data of LLZ-CaBi and Li₃BO₃ composite

electrolytes sintered at 750 °C.