Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Cu₅FeS₄ quantum dots as single-component photo-assisted electrocatalyst for efficient hydrogen evolution

Dongxu Zhang,^a Yanhong Liu,^{*a} Longhua Li,^a Di Li,^a Tianyao Jiang,^a Hui Huang,^b Deli Jiang,^{*a} Zhenhui Kang,^{*bc} and Baodong Mao^{*a} ^aSchool of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China ^bInstitute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China ^cMacao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China

*Corresponding authors E-mail: liuyh@ujs.edu.cn (Y.L.); dlj@ujs.edu.cn (D.J.); zhkang@suda.edu.cn (Z.K.); maobd@ujs.edu.cn (B.M.).

Electrochemical Measurements

All the electrochemical measurements were performed with a CHI 760E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system with a rate of 5 mV s⁻¹. Typically, the catalysts grown on Nickel foam (NF) were employed as working electrode, Hg/HgO as reference electrode, and graphite rod as the counter electrode for HER tests in 1.0 M KOH electrolyte, in which the NF was ultrasonically treated in acetone and ethanol solution and followed by washing with distilled water. Notedly, Ag/AgCl and Hg/HgO are used as reference electrodes when electrolyte pH=3 and 7, respectively. The potentials vs. reversible hydrogen electrode (RHE) were converted from the reference scale by using the following equations: $E_{(RHE)} = E_{(Hg/HgO)} + 0.098 V + 0.059 \times pH$ and $E_{(RHE)} = E_{(Ag/AgCl)} + 0.1976 V + 0.059 \times pH$.

The double-layer capacitance (C_{dl}) was measured in 1.0 M KOH solution by cyclic voltammetry (CV) with scanning rates of 10-100 mV/s in the potential range from 0.72 to 0.82 V versus RHE. Electrochemical impedance spectra (EIS) and Mott-Schottky plots of the samples were measured in three different electrolytes, including 0.5 M H₂SO₄, 1.0 M PBS and 1.0 M KOH.

Fig. S1 The XRD patterns of Cu_5FeS_4 QDs (JCPDS no. 73-1667), Cu_5FeS_4/NF and Ni_3S_2/NF .

Fig. S2 The XRD patterns of (a) $Cu_{2-x}S$ (JCPDS no. 23-0959), (b) FeS (JCPDS no. 89-6268) and (c) Ni_3S_2 (JCPDS no. 44-1418) samples.

Fig. S3 EDX spectrum of the Cu_5FeS_4 QDs.

Fig. S4 XPS spectra of Cu_5FeS_4 QDs: (a) survey and (b) Ni 2p.

Fig. S5 The XPS valence band spectra of (a) $Cu_{2-x}S$ QDs and (b) Cu_5FeS_4 .

Fig. S6 TPV relaxation curves of $Cu_{2-x}S$ QDs and Cu_5FeS_4 .

Fig. S7 The FE of electrocatalytic, photocatalytic and P-EC hydrogen production.

Fig. S8 The electrocatalytic and P-EC HER activity of (a) NF, NF-L, Ni₃S₂, Ni₃S₂-L, Cu₅FeS₄/NF and Cu₅FeS₄/NF-L and (b) Cu₅FeS₄-NF, Cu₅FeS₄-NF-L, Cu₅FeS₄-Ni₃S₂, Cu₅FeS₄-Ni₃S₂-L, Cu₅FeS₄/NF and Cu₅FeS₄/NF-L.

Fig. S9 Polarization curves of Cu_5FeS_4/NF before and after 2000 CV cycles under dark.

Fig. S10 The multi-current-process i-t curve of Cu_5FeS_4/NF under dark.

Fig. S11 XRD patterns of Cu_5FeS_4/NF before and after P-EC catalysis test of 20 h under continuous light irradiation.

Fig. S12 XPS of Cu_5FeS_4/NF before and after P-EC test of 20 h under continuous light irradiation: (a) survey, (b) Cu 2p, (c) Fe 2p, (d) Ni 2p, (e) S 2p and (f) O 1s.

Fig. S13 Polarization curves of (a) electrocatalytic and (b) P-EC with different Cu/Fe ratios. (c) The corresponding overpotentials at current density of 10 mA cm⁻² for different electrodes.

Fig. S14 (a) C_{dl} and (b) EIS patterns of the catalysts different Cu/Fe ratios.

Fig. S15 Conduction and Valence band behaviour in electrode and electrolyte interface: (a) before contact, (b) after contact, (c) and (d) under potential bias without and with light, respectively.

Fig. S16 EIS patterns of Cu_5FeS_4/NF in three different electrolytes (pH = 3, 7 and 11).

Fig. S17 TPV relaxation curves of $\rm Cu_{2-x}S/NF$ and $\rm Cu_5FeS_4/NF.$

Fig. S18 CV curves at different scan rates of $Cu_{2-x}S/NF$ without (a) and with light (b); CV curves at different scan rates of Cu_5FeS_4/NF without (c) and with light (d).

Fig. S19 (a) Top view of H^* adsorption and (b) charge density difference of Cu_5FeS_4 QDs without light.

Table S1 HER performance comparison between $Cu_5FeS_4/NF-L$ in our work and other cheap transition metal catalysts reported previously.

Catalysts	Electrolyte	Overpotential	Refs.
		at 10 mA cm ⁻² (mV)	
Cu ₅ FeS ₄ /NF-L	1M KOH	52	This work
TiS _{2-x} /NiS	1М КОН	63	1
Ni-Fe-P-Ni ₃ S ₂ /NF	1М КОН	65	2
MoS ₂ -RGO	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	66	3
N-NiMoS	0.1 M KOH	68	4
$CdS@Co_8S_9/Ni_3S_2$	1M KOH	69.6	5
Fe _x Ni _{3-x} S ₂ @NF	1М КОН	72	6
N-NiS ₂ /CoS ₂	1M KOH	73	7
NiFeCoSx@FeNi ₃	1М КОН	88	8
$N-NiMoO_4/NiS_2$	1M KOH	99	9
NiSe-Ni _{0.85} Se	1M KOH	101	10
Fe-Ni ₃ S ₂ @FeNi ₃	1М КОН	105	11
$B-Fe_7S_8/FeS_2$	1М КОН	113	12
W-NiO/NiS ₂	1M KOH	116	13
NiCo ₂ S ₄ /Ni ₃ S ₂	1M KOH	127	14
Fe-CoMoS	1M KOH	137	15
$Co_{0.9}S_{0.58}P_{0.42}$	1M KOH	141	16
FeS	1M KOH	142	17
Ni ₃ S ₂	1M KOH	147	18
Co ₉ S ₈ -MoS ₂ /N-	1М КОН	163	19
CNAs@CNFs			
$\mathrm{Fe}_{0.95\text{-}\mathrm{x}}\mathrm{Ni}_{\mathrm{x}}\mathrm{S}_{1.05}$	1M KOH	263	[0

Samples	Dark (Ω cm ²)	Light (Ω cm ²)
pH=3	320.5	155.6
pH=7	478.9	424.2
pH=11	270.7	73.8

Table S2 The R_{ct} values of $\rm Cu_5FeS_4/NF$ in different electrolytes with/without light.

chout in the inset of Fig. 51.				
Samples	$R_s (\Omega \text{ cm}^2)$	$R_{ct} \left(\Omega \ { m cm}^2 ight)$		
Cu _{2-x} S/NF	112.3	1165.3		
Cu _{2-x} S/NF-L	28.8	283.9		
Cu ₅ FeS ₄ /NF	19.4	268.8		
Cu ₅ FeS ₄ /NF-L	1.3	24.9		

Table S3 Fitting parameters of the EIS data of different samples using the equivalentcircuit in the inset of Fig. 5f.

References:

- 1 J. Wu, W. Zhong, C. Yang, W. Xu, R. Zhao, H. Xiang, Q. Zhang, X. Li and N. Yang, *Appl. Catal.*, *B*, 2022, **310**, 121332.
- 2 Z. Li, K. Wang, X. Tan, X. Liu, G. Wang, G. Xie and L. Jiang, *Chem. Eng. J.*, 2021, **424**, 130390.
- 3 X. Gao, J. Qi, S. Wan, W. Zhang, Q. Wang and R. Cao, Small 2018, 14, 1803361
- 4 C. Huang, L. Yu, W. Zhang, Q. Xiao, J. Zhou, Y. Zhang, P. An, J. Zhang and Y. Yu, *Appl. Catal.*, *B*, 2020, **276**, 119137.
- 5 F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang and S. Yang, *J. Mater. Chem. A*, 2020, **8**, 3083-3096.
- 6 B. Fei, Z. Chen, J. Liu, H. Xu, X. Yan, H. Qing, M. Chen and R. Wu, *Adv., Energy Mater.*, 2020, **10**, 2001963.
- 7 B. Qiu, Y. Zhang, X. Guo, Y. Ma, M. Du, J. Fan, Y. Zhu, Z. Zeng and Y. Chai, J. Mater. Chem. A, 2022, 10, 719-725.
- 8 J. Shen, Q. Li, W. Zhang, Z. Cai, L. Cui, X. Liu and J. Liu, *J. Mater. Chem. A*, 2022, 10, 5442-5451.
- 9 L. An, J. Feng, Y. Zhang, R. Wang, H. Liu, G.-C. Wang, F. Cheng and P. Xi, *Adv. Funct. Mater.*, 2019, **29**, 1805298.
- 10 Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian and H. Fu, Small, 2018, 14, 1800763.
- 11 W. Zhang, Q. Jia, H. Liang, L. Cui, D. Wei and J. Liu, *Chem. Eng. J.*, 2020, **396**, 125315.
- 12 J. Wu, Q. Zhang, K. Shen, R. Zhao, W. Zhong, C. Yang, H. Xiang, X. Li and N. Yang, *Adv. Funct. Mater.*, 2021, **32**, 2107802.
- 13 H. Wang, T. Liu, K. Bao, J. Cao, J. Feng and J. Qi, *J. Colloid Interface Sci.*, 2020, **562**, 363-369.
- 14 X. Zhao, H. Liu, Y. Rao, X. Li, J. Wang, G. Xia and M. Wu, ACS Sust. Chem. Engin., 2018, 7, 2610-2618.
- 15 Y. Guo, X. Zhou, J. Tang, S. Tanaka, Y.V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y. Bando and Y. Sugahara, *Nano Energy*, 2020, **75**, 104913.
- 16 Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. S25

Wang and Q. Yan, ACS Nano, 2017, 11, 11031-11040.

- 17 G. Zhou, Y. Shan, L. Wang, Y. Hu, J. Guo, F. Hu, J. Shen, Y. Gu, J. Cui, L. Liu and X. Wu, *Nat. Commun.*, 2019, **10**, 399.
- 18 X. Shi, X. Ling, L. Li, C. Zhong, Y. Deng, X. Han and W. Hu, J. Mater. Chem. A, 2019, 7, 23787-23793.
- 19 W. Zhang, X. Zhao, Y. Zhao, J. Zhang, X. Li, L. Fang and L. Li, ACS Appl. Mater. Interfaces, 2020, 12, 10280-10290.
- 20 Z. Jing, Q. Zhao, D. Zheng, L. Sun, J. Geng, Q. Zhou and J. Lin, *J. Mater. Chem. A*, 2020, **8**, 20323-20330.