Supp]	lementary	Informatio	n
· · · I · I ·			

\sim
• >
/
_

- 3 Synthesis and characterization of the ultra-thin BiOCl/MXene heterostructure, for the detection
- 4 of NO₂ at room temperature with enhanced moisture resistance
- 5 Jiahui Fan^a, Jun Gao^c, He Lv^a, Lin Jiang^a, Fangjie Qin^a, Yihe Fan^a, Baihe Sun^a, Jue Wang^a, Muhammad
- 6 Ikram^{b*}, Keying Shi^{a*}
- 7
- 8 a.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of
- 9 Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.
- 10 b.Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China.
- 11 c.Harbin Normal University, Harbin, 150025, P. R. China.
- 12 * Corresponding author
- 13 Corresponding author: Tel: +86 451 86609141; +86 451 86604920
- 14 E-mail: ikram2888@yahoo.com
- 15 E-mail: shikeying2008@163.com
- 16 Fax: +86 4518667 3647; Tel: +86 451 8660 9141
- 17
- 18
- 19
- 20
- 21
- 22 23
- 24
- 25
- 26
- 20
- 27
- 1

Table S1 Comparison of gas sensing performance of the previous Bi-based gas sensors with the present

29	BiOCl/Mxene sensor.
----	---------------------

Sensor material	Gas	Operating temperature	Gas concentrat ion	Response (S)	Response time	Recovery time	Detection limit	Ref.
Au/BiOCl	CO _x	200- 300°С	100- 400pm	63.2% [®]	9s	-	100ppm	1
BiOCl	СО	300- 400°C	800ppm	90% ^①	4.3s	-	100ppm	2
BiOCl	Ethanol	180°C	1000ppm	30% ¹	-	-	5ppm	3
Bi@CdO	Formalde hyde	130°C	100ppm	86.2% ¹	78s	89s	-	4
Bi ³⁺ @Bi-Co	NO ₂	230°C	200ppm	34% ^①	31s	29s	25ppm	5
Bi@In ₂ O ₃	Acetone	200°C	1ppm	6.38	15s	35s	0.3ppm	6
Bi@SnO ₂	Ethanol	300°C	100ppm	71% ^①	12s	30s	-	7
$\begin{array}{c} Bi@Zn_2Sn\\ O_4 /\\ SnO_2 \end{array}$	Formalde hyde	180°C	50ppm	23.2% ¹	16s	9s	-	8
BiFeO ₃	СО	350°C	30ppm	2.12 [®]	25s	13s	-	9
Bi@SnO ₂ / rGO	Benzene	150°C	5ppm	48.6 ^[®]	9s	13s	1ppm	10
BiOCl/MXe ne	NO ₂	RT	100ppm	34.58 [®]	3.15s	31.05s	0.03ppm	This Work

30 (1): $S=|Ra-Rg|/Ra \times 100\%$ or $S=|Rg-Ra|/Ra \times 100\%$

31 ②: S=Ra/Rg

Sensor material	or material Gas Operating temperature		Gas concentration	Response (S)	RH (%)	Ref.
Bi-SnO ₂	NO	75°C	5ppm	85^{\odot}	85	11
Bi ₂ O ₃ -SnO ₂	NO_2	RT	2ppm	61.1% [®]	87.8	12
In2O3-ZnO	NO_2	RT	500ppb	3.5 ^[©]	80	13
2H-MoS ₂ /MXene	NO_2	RT	100ppm	75% ^①	78	14
V ₂ CT _x MXene	NO_2	RT	20ppm	76% ^①	51.9	15
Ag ₂ Te	NO_2	RT	5ppm	$10.2\%^{\odot}$	90	16
Au-RGOH	NO_2	RT	0.5ppm	9% ^①	82	17
ZnO	NO_2	49°C	3ppm	5^{\odot}	90	18
In ₂ O ₃ /ZnO	NO_2	RT	1ppm	2.5^{\odot}	90	19
Ti ₃ C ₂ T _x /γ-PGA	NO_2	RT	50 ppm	1344% ¹	50	20
WO ₃ /Ti ₃ C ₂ T _x	NO_2	RT	200 ppb	145% ^①	99	21
Ti ₃ C ₂ T _x -ZnO	NO_2	RT	20 ppm	202.26 ^{^①}	80	22
Pt SA-Ti ₃ C ₂ T _x	TEA	RT	2 ppm	175% ^①	80	23
BQ/Ti ₃ C ₂ T _x	NO_2	RT	1 ppm	30% ^①	80	24
Ag2-Ti ₃ C ₂ T _x	H_2S	RT	1 ppm	51.5% [®]	80	25
BiOCl/MXene	NO ₂	RT	100ppm	2274% ^① 30.54 ^②	80	This Work
BiOCl/MXene	NO_2	RT	30ppb	$12.9\%^{\odot}$ 1.13^{\odot}	80	This Work

Table S2 Comparative response of the sensors to BiOCl/Mxene at different RH (%) (Humidity).

```
41 (1): S = |Ra - Rg|/Ra \times 100\% or S = |Rg - Ra|/Ra \times 100\%
```

42 ②: S=Ra/Rg

Scheme. S1. Schematic illustration for the synthesis of BiOCl/MXene composites.

Scheme. S2. The gas delivery system diagram for the sensing process.

71 Fig. S2. SEM (a and b), TEM/HRTEM (c-e), and EDS elemental mapping images (f-j) of Ti₃C₂T_x

72 MXene.

92 Materials required for experimental synthesis

Oleylamine (OLA, 70%), Oleic acid (OA, 90%), Iron acetylacetonate(Fe(acac)₃, ≥99.9%), 1-93 Octadecene (ODE,90%) were purchased from Sigma-Aldrich. BiCl₃ (99.97%) was purchased from 94 Alfa Aesar. Ti₃AlC₂ (MAX phase) powder was purchased from Laizhou Kaixi Ceramic MaterialCo. 95 Ltd. Hydrochloric acid (HCl) was supplied by Tianjin Tianli Chemical Reagent Co, Ltd. NOx gas 96 (99.9%) was purchased from Dalian Date Gas Co. 97 Based on the experimental facts and the relevant literature ²⁶, the possible involvement of Fe(acac)₃ 98 in the reaction process is considered as follows: 99 (1) Production of primary free radicals 100 $\begin{array}{c} H & \mathbf{R}_1 \\ \downarrow & \downarrow \\ \mathbf{R}_2 - \mathbf{N} - \mathbf{C} = \mathbf{O} \end{array} \xrightarrow{} \mathbf{Fe}(\mathbf{acac})_3 \xrightarrow{} \mathbf{R}_1 - \mathbf{N} - \mathbf{C} \xrightarrow{} \mathbf{O}^{\cdot} + \mathbf{Fe}(\mathbf{acac})_2 \end{array}$

101

102 (2) The chain initiation

103104 (3) The chain growth

105

106

108

 $acac - Bi \cdot + Bi \rightarrow acac - Bi_2 \cdot acac - Bi_{(n-1)} \cdot + Bi \rightarrow acac - Bi_{(n)} \cdot$

 $acac \cdot + Bi \rightarrow acac - Bi \cdot$

107 (4) The chain termination

 $acac - Bi_{(n)} \cdot + Bi_{(n)} \cdot - acac \rightarrow acacBi_{(2n)} - acac$

During the reaction, Fe(acac)₃ acts as an initiator to first form reactive amide radicals, which form reactive monomeric amides with the metal atom Bi, and then assemble continuously with the monomer to promote chain growth. Finally, the growing active chains become inactivated and terminate the chains. Eventually, the terminated chains end to form independent nanocrystals.

113

116 Fig. S4. (a-c) HRTEM images of BOM-3 (red lines show surface defects in BiOCl, light blue lines

¹¹⁷ indicate point defects).

BOM-5

Table S3 Summary of TEM-EDS results of BOM composites in terms of weight and atomic percentage.

Sample	Content	С	Ti	0	F	Bi	Cl
	Wt%	38.5	22.4	5.8	3.1	26.0	4.2
BOM-1	At%	72.2	10.5	8.1	3.6	2.8	2.8
DOM 2	Wt%	50.1	16.6	8.5	2.8	18.8	3.2
DOM-3	At%	77.8	7.8	8.2	2.5	1.9	1.8
BOM-5	Wt%	79.6	4.6	9.6	0.9	4.4	0.9
	At%	89.4	1.3	8.1	0.6	0.3	0.3

Raw materials	R1 (Ω)	C1 (F)	R2 (Ω)	C2 (F)
BOM-1	8.286×10 ⁵	9.204×10 ⁻¹²	1.046×10 ⁵	2.223×10 ⁻¹¹
BOM-3	1.801×10 ⁵	1.728×10 ⁻¹¹	1.390×10 ⁴	1.090×10 ⁻¹¹
BOM-5	2.219×10 ⁶	9.775×10 ⁻¹²	1.996×10 ⁵	2.403×10 ⁻¹¹
V-BOM	3.135×10^{6}	9.545×10 ⁻¹²	2.058×10 ⁵	2.568×10 ⁻¹¹
BiOCl	6.167×10 ⁶	6.568×10 ⁻¹⁰	1.940×10 ⁶	5.294×10 ⁻¹¹

Fig. S7. The equivalent circuit model used to interpret the EIS data.

Sample	BOM-1				BOM-3			BOM-5			V-BOM			BiOCl		
NO ₂ (ppm)	S	T/s	Tr/s													
100	28.07	3.33	58.00	34.58	3.15	31.05	24.86	3.65	35.66	20.75	5.39	40.33	12.75	7.39	65.33	
50	20.93	5.10	51.34	29.25	4.68	30.02	18.25	5.42	32.00	15.52	7.52	35.00	10.52	9.52	61.00	
30	18.32	6.38	45.33	25.80	6.24	29.58	12.81	6.57	30.16	11.63	8.94	33.48	8.63	10.94	49.48	
10	17.77	7.32	42.00	24.96	6.22	25.70	12.68	8.17	27.56	10.26	11.68	30.56	6.26	11.68	45.56	
5	14.55	8.51	36.00	22.69	7.89	24.93	10.11	9.39	26.66	9.75	12.90	28.05	4.75	11.90	43.05	
3	8.60	9.49	34.69	19.33	8.47	23.01	8.08	9.96	25.91	7.13	13.98	26.73	3.13	12.98	37.73	
1	6.19	9.57	25.34	15.18	8.58	15.99	5.53	10.46	25.67	4.31	14.12	25.92	2.31	13.12	28.92	
0.5	5.40	10.31	22.97	10.22	9.18	12.54	4.27	11.13	25.19	4.20	15.68	24.67	1.20	15.68	20.67	
0.3	3.27	10.60	13.65	7.24	9.41	10.87	3.08	12.48	15.73	3.17	17.69	20.23	1.17	17.69	18.23	
0.1	2.21	11.56	5.63	4.21	10.35	8.69	2.19	13.35	9.68	2.16	18.11	18.65	1.16	18.11	14.65	
0.05	1.96	12.87	4.90	2.19	11.42	5.86	1.84	15.29	6.94	1.05	20.15	15.47	1.05	20.15	13.47	
0.03				1.02	12.68	3.63										

Table S5 Response, response time, and recovery time of BOM sensors at room temperature (RT=25 °C, RH 25%).

133 *S: Response T_s : Response time T_r : Recovery tim

Fig. S8. Dynamic response-recovery time curves of the different ratios of BiCl₃: Fe(acac)₃: OA: OLA;

137 (a)1:1:1:1; (b) 1:1:1:2; (c) 1:1:2:1 and (d) 1:2:1:1; Dynamic response-recovery time curves of the (e)

Sample	BOM-1 BOM-3			BOM-5			V-BOM			BiOCl					
NO ₂ (pp)	S	T/s	Tr/s	S	T/s	Tr/s	S	T/s	Tr/s	S	T/s	Tr/s	S	T/s	Tr/s
100	22.07	5.78	39.65	30.54	5.58	35.08	20.35	5.98	42.36	18.38	6.10	45.33	2.56	6.39	55.00
50	20.35	7.25	38.24	28.38	6.21	34.88	18.55	7.39	41.00	16.32	7.49	42.00	2.45	7.52	47.00
30	19.68	7.83	37.96	23.26	7.35	30.25	17.30	8.38	39.51	11.89	8.58	40.48	1.87	8.94	41.00
10	18.88	8.24	32.42	22.08	7.89	27.68	15.64	9.00	35.00	10.97	9.35	38.56	1.56	9.98	33.54
5	17.69	9.36	30.58	18.54	8.34	26.38	13.19	10.59	32.08	9.64	11.25	35.05	1.37	10.56	31.09
3	12.55	10.22	26.68	13.24	9.40	20.35	10.73	11.94	28.00	7.35	13.98	30.73	1.19	15.98	22.00
1	8.39	11.37	20.37	9.76	9.89	15.37	6.51	13.12	26.07	4.88	14.28	28.92	1.13	18.12	15.00
0.5	4.36	12.36	15.53	5.44	10.25	11.72	4.33	15.00	20.00	4.15	17.88	22.67			
0.3	3.20	13.72	13.83	3.30	11.38	9.86	3.19	15.80	15.60	3.10	19.49	18.23			
0.1	1.06	14.20	8.69	1.14	12.84	8.56	1.02	16.00	10.76	1.16	20.61	15.65			
0.05				1.13	13.67	5.31									

Table S6 The response, response time and recovery time of samples at RH=80% for different NO₂.

***S: Response T: Response time Tr: Recovery time**

Sample		BiO	DCI		BOM-3	3	В	OM-3+NO	2		
Peak	Chemisor bed oxygen	Oxygen vacancy	Lattice oxygen	Chemi sorbed oxygen	Oxygen vacancy	Lattice oxygen	Chemisor bed oxygen	Oxygen vacancy	Lattice oxygen		
Peak position(eV)	533.1	531.1	529.5	533.1	531.1	529.5	533.3	531.5	529.7		
Peak area	463.5	1517.7	2102.9	491.6	2968.2	2823.7	148.5	4170.4	2157.6		
Peak area ratio (%)	11.3	37.1	51.6	7.8	47.2	44.9	1.8	51.4	26.5		
Sample		BiOC	l+NO ₂		MXene)	Ν	MXene+NO ₂			
Peak	Chemisor bed oxygen	Oxygen vacancy	Lattice oxygen	Chemi sorbed oxygen	Oxygen vacancy	Lattice oxygen	Chemisor bed oxygen	Oxygen vacancy	Lattice oxygen		
Peak position(eV)	533.5	531.9	530.0	532.5	530.3	529.3	532.9	531.5	529.6		
Peak area	1002.8	3904.3	4829.3	3227.5	3467.6	3227.5	6763.1	9658.5	5680.1		
Peak area	10.2	40.1	10.6	22.5		22.6	20.6	10.7	05.7		

Table S7 O 1s peak position and peak area ratio (%) of samples.

158 All the sensor was detected gas sensing under NO_2 for 1 h.

Fig. S11. FT-IR spectra of MXene, BiOCl, BOM-5, BOM-3 and BOM-1

The FTIR spectra (KBr) of MXene, BiOCl, and BOM nanocomposites are shown in Fig. S10. 170 The spectra of MXene samples show peaks at 548 cm⁻¹, 1143 cm⁻¹, 1623 cm⁻¹, and 3443 cm⁻¹, which 171 are attributed to Ti-O, C-F, C=O, and -OH stretching vibrations ^{27,28}. Compared to MXene, both BiOCl 172 and BOM nanocomposites show a new band at 2852 and 2922 cm⁻¹, which may be caused by C-H 173 bending in the alkyl chain ²⁹. Meanwhile, the intensity of the C-OH peak at 1181 cm⁻¹ is rapidly 174 increasing. A new band of Bi-O stretching vibration at 524 cm⁻¹ can also be observed in BiOCl and 175 BOM nanocomposites ³⁰, which is a characteristic band of BiOCl. Also, the strong band at 1457 cm⁻¹ 176 177 is attributed to be caused by the vibrations of the -NH₂ group. This peak indicates that BiOCl and BOM nanocomposites are modified by organic groups of oleylamine ³¹. Moreover, the peaks at 1612 cm⁻¹ 178 and 1717 cm⁻¹ tend to be amide II (R-NHR', NH₂ deformation, N-H bending, and C-N stretching) and 179 amide I (R-CONHR', C=O stretching), respectively. And the coexistence of these two peaks reveals 180 the surface adhesion of O=C-NH species in BiOCl and BOM nanocomposites, which are N-oleoyl 181 oleamide products resulting from the dehydration of oleic acid and oleylamine ³². 182

Fig. S12. (a-b) UV-vis diffuse reflectance spectra of BOM-3, Mxene, BiOCl; (c-e) Scheme of the Kelvin probes of the $Ti_3C_2T_x$ MXene, BOM-3 and BiOCl; (f) Energy band structure of the BOM composites in air and a NO₂ atmosphere.

Fig. S14. O 1s XPS spectra of BiOCl and MXene without adsorbed NO₂ and after adsorption of NO₂

Fig. S15. N 1s XPS spectra of fresh and the BOM-3+NO₂.

208 **References**

- 209 1. C. R. Michel, N. L. López Contreras and A. H. Martínez-Preciado, Sensors and Actuators B: Chemical, 2012, 173, 100-105.
- 2. C. R. Michel, N. L. L. Contreras and A. H. Martínez-Preciado, Sensors and Actuators B: Chemical, 2011, 160, 271-277.
- S. T. Navale, Z. Yang, C. Liu, A. Kumar, G. Sharma, P. Cao, V. B. Patil and F. J. Stadler, Journal of Alloys and Compounds, 2019, 778, 532-541.
- P. Velusamy, R. Xing, R. R. Babu, E. Elangovan, J. Viegas, S. Liu and M. Sridharan, Sensors and Actuators B: Chemical, 2019, 297, 126718.
- 215 5. S. U. Mutkule, K. K. Tehare, S. K. Gore, K. C. Gunturu and R. S. Mane, Materials Research Bulletin, 2019, **115**, 150-158.
- 216 6. Z. Tao, Y. Li, B. Zhang, G. Sun, J. Cao and Y. Wang, Sensors and Actuators B: Chemical, 2020, **321**, 128623.
- L. P. Chikhale, J. Y. Patil, F. I. Shaikh, A. V. Rajgure, R. C. Pawar, I. S. Mulla and S. S. Suryavanshi, Materials Science in Semiconductor
 Processing, 2014, 27, 121-129.
- 8. R. Zhang, S. Y. Ma, J. L. Zhang, B. J. Wang and S. T. Pei, Journal of Alloys and Compounds, 2020, 828, 154408.
- 220 9. S. Chakraborty and M. Pal, New Journal of Chemistry, 2018, **42**, 7188-7196.
- 221 10. W. Guo, Q. Zhou, J. Zhang, M. Fu, N. Radacsi and Y. Li, Sensors and Actuators B: Chemical, 2019, 299, 126959.
- 222 11. Z. Ma, K. Yang, C. Xiao and L. Jia, J Hazard Mater, 2021, **416**, 126118.
- J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim and H. W. Kim, Sensors and Actuators B: Chemical, 2018, 274, 356-369.
- 225 13. S. Gasso, M. K. Sohal and A. Mahajan, Sensors and Actuators B: Chemical, 2022, **357**,31427.
- 226 14. H. Yan, L. Chu, Z. Li, C. Sun, Y. Shi and J. Ma, Sensors and Actuators Reports, 2022, 4, 100103.
- Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu, B. Liu, Q. Zhao, S. Wang, Z. Yuan and H. Tai, Sensors and Actuators B: Chemical, 2021,
 344, 130150.
- 16. Z. Yuan, Q. Zhao, Z. Duan, C. Xie, X. Duan, S. Li, Z. Ye, Y. Jiang and H. Tai, Sensors and Actuators B: Chemical, 2022, **363**, 131790.
- J. Wu, Y. Liang, Z. Zhou, Z. Wu, H. Ding, W. Huang, K. Tao, W. Shi, B.-R. Yang and X. Xie, Sensors and Actuators B: Chemical, 2021,
 344, 130259.
- 18. H. Wang, M. Dai, Y. Li, J. Bai, Y. Liu, Y. Li, C. Wang, F. Liu and G. Lu, Sensors and Actuators B: Chemical, 2021, **329**, 129145.
- 233 19. C. Han, X. Li, Y. Liu, X. Li, C. Shao, J. Ri, J. Ma and Y. Liu, J Hazard Mater, 2021, 403, 124093.
- 234 20. Q. Zhao, D. Sun, S. Wang, Z. Duan, Z. Yuan, G. Wei, J. Xu, H. Tai and Y. Jiang, ACS Sens, 2021, **6**, 2858–2867.
- 235 21. S. Gasso and A. Mahajan, ACS Sens. 2022, **7**, 2454–2464.
- 236 22. C. Fan, J. Shi, Y. Zhang, W. Quan, X. Chen, J. Yang, M. Zeng, Z. Zhou, Y. Su, H. Wei and Z. Yang, Nanoscale, 2022, 14, 3441.
- 237 23. B. Zong, Qikun Xu, and Shun Mao. ACS Sens. 2022, 7, 1874–188.
- 238 24. Q. Xu, B. Zong, Y. Yang, Q. Li, S. Mao a,b, Sensors and Actuators B: Chemical, 2022, 373, 132696.
- 239 25. Qi. Xu, B. Zong, Q.Li, X. Fang, S. Mao, K. Ostrikov, J Hazard Mater, 2022, 424, 12749.
- 240 26. B. N. Misra, I. K. Mehta and D. S. Sood, Journal of Macromolecular Science: Part A Chemistry, 2006, **14**, 1255-1268.
- 241 27. Y. Feng, H. Wang, J. Xu, X. Du, X. Cheng, Z. Du and H. Wang, J Hazard Mater, 2021, **416**, 125777.
- 242 28. B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai, Y. Zhang, J. Chen, K. Kan and K. Shi, Journal of Materials Chemistry A, 2021, 9, 6335-6344.
- 243 29. G. Qiu, T. Wang, X. Li, X. Tao and B. Li, Industrial & Engineering Chemistry Research, 2020, **59**, 11517-11526.
- 244 30. H. Wang, B. Liao, T. Lu, Y. Ai and G. Liu, J Hazard Mater, 2020, **385**, 121552.
- 245 31. J. Liu, L. Wang, J. Wang and L. Zhang, Materials Research Bulletin, 2013, **48**, 416-421.
- 32. M. H. Yang, S. S. Yuan, T. W. Chung, S. B. Jong, C. Y. Lu, W. C. Tsai, W. C. Chen, P. C. Lin, P. W. Chiang and Y. C. Tyan, Biomed Res Int,
 2014, 2014, 209469.
- 248