Electronic Supplementary Information

Boosted charge separation in direct z-scheme heterojunction of

CsPbBr₃/ultrathin carbon nitride for improved photocatalytic CO₂

reduction

Fanqi Luo^a, Mingyang Liu^b, Mang Zheng^b, Qi Li^{*b}, Hong Wang^{*a}, Jing Zhou^c, Y ong Jiang^d, Yaoguang Yu^e, Baojinag Jiang^{*a}

^a F.Q. Luo, Prof. H. Wang, Prof. B. J. Jiang

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

^b M. Y. Liu, M. Zheng, Q. Li College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.

^c Prof. J. Zhou Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

^d Prof.Y.Jiang College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

^e Prof. Y.Y. Yu
School of Materials, Sun Yat-sen University, Shenzhen 518107, P. R. China.
E-mail: liqchem@sina.com; wanghong1@hlju.edu.cn; jbj@hlju.edu.cn

Table of Content

Fig. S1 Typical TEM, AFM images and height cutaway view of (a-c) CNN and (d-f) CPBN3
Fig. S2 XRD patterns of CPBN, CNN, CPBN/CNN-2, CPBN/CNN-3 and CPBN/CNN-4,
respectively4
Fig. S3 Raman spectra of CNN and CPBN/CNN-35
Fig. S4 EDX spectrum of CPBN/CNN-36
Fig. S5 The XPS spectra of samples: (a) survey, (b) Br 3d7
Fig. S6 Relative WF maps of CNN, CPBN and CPBN/CNN-38
Fig. S7 Steady-state PL spectra of CNN, CPBN and CPBN/CNN-39
Fig. S8 Photoelectrochemical amperometric I-t plots of CNN, CPBN and CPBN/CNN-310
Fig. S9 EIS Nyquist plots of CNN, CPBN and CPBN/CNN-311
Fig. S10 (a) CH_4 , (b) CO and (c) O_2 yield of CNN, CPBN and CPBN/CNN-X by recording every 1h upon illumination for 4 h12
Fig. S11 (a) Photocatalytic time courses of, CO and CH_4 evolution of CNN, CPBN/CNN-X, CPBN, (b) CH_4 and CO yield of as-synthesized photocatalysts, along with different amount water
Fig. S12 (a) TEM and (b) XRD patterns of CPBN/CNN-3 after photocatalytic reaction14
Fig. S13 The AQE of CPBN/CNN-315
Fig. S13 The AQE of CPBN/CNN-3.15Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of H218O.16
Fig. S13 The AQE of CPBN/CNN-3.15Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of $H_2^{18}O$.16Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D_2O .17
Fig. S13 The AQE of CPBN/CNN-3.15Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of $H_2^{18}O$.16Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D_2O .17Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3.18
Fig. S13 The AQE of CPBN/CNN-3.15Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of $H_2^{18}O$.16Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D_2O .17Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3.18Table S2. Summary of photocatalytic CO2 reduction performances of different catalysts after irradiation for 4 h19
Fig. S13 The AQE of CPBN/CNN-3. 15 Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of H ₂ ¹⁸ O. 16 Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D ₂ O. 17 Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3. 18 Table S2. Summary of photocatalytic CO ₂ reduction performances of different catalysts after irradiation for 4 h. 19 Table S3. Comparison of the measured evolution rates of O ₂ with its theoretical ones in 19
Fig. S13 The AQE of CPBN/CNN-3. 15 Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of H ₂ ¹⁸ O. 16 Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D ₂ O. 17 Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3. 18 Table S2. Summary of photocatalytic CO ₂ reduction performances of different catalysts after irradiation for 4 h. 19 Table S3. Comparison of the measured evolution rates of O ₂ with its theoretical ones in terms of the amount of photoreduction products. 20
Fig. S13 The AQE of CPBN/CNN-3.15Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of $H_2^{18}O$.16Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D_2O .17Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3.18Table S2. Summary of photocatalytic CO2 reduction performances of different catalysts after irradiation for 4 h.19Table S3. Comparison of the measured evolution rates of O_2 with its theoretical ones in terms of the amount of photoreduction products.20Table S4. Evolution of CO and CH4 under different reaction conditions;21
Fig. S13 The AQE of CPBN/CNN-3. 15 Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of H2 ¹⁸ O. 16 Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D2O. 17 Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3. 18 Table S2. Summary of photocatalytic CO2 reduction performances of different catalysts after irradiation for 4 h. 19 Table S3. Comparison of the measured evolution rates of O2 with its theoretical ones in terms of the amount of photoreduction products. 20 Table S4. Evolution of CO and CH4 under different reaction conditions; 21 Table S5. Summary of the photocatalytic CO2 reduction performance of perovskite-based catalysts. 22

Fig. S1 Typical TEM, AFM images and height cutaway view of (a-c) CNN and (d-f) CPBN.

Fig. S2 XRD patterns of CPBN, CNN, CPBN/CNN-2, CPBN/CNN-3 and CPBN/CNN-4, respectively.

Fig. S3 Raman spectra of CNN and CPBN/CNN-3.

Fig. S4 EDX spectrum of CPBN/CNN-3.

Fig. S5 The XPS spectra of samples: (a) survey, (b) Br 3d.

Fig. S6 Relative WF maps of CNN, CPBN and CPBN/CNN-3.

To further investigate the electron transfer between CNN and CPBN, the work function (WF) was measured using a Kelvin probe (Fig. S7). The results show that when CNN and CPBN are in contact, electrons are transferred from CPBN to CNN through the contact interface.

Fig. S7 Steady-state PL spectra of CNN, CPBN and CPBN/CNN-3.

Fig. S8 Photoelectrochemical amperometric I-t plots of CNN, CPBN and CPBN/CNN-3.

Fig. S9 EIS Nyquist plots of CNN, CPBN and CPBN/CNN-3.

Fig. S10 (a) CH_4 , (b) CO and (c) O_2 yield of CNN, CPBN and CPBN/CNN-X by recording every 1h upon illumination for 4 h.

Fig. S11 (a) Photocatalytic time courses of, CO and CH_4 evolution of CNN, CPBN/CNN-X, CPBN, (b) CH_4 and CO yield of as-synthesized photocatalysts, along with different amount water.

Fig. S12 (a) TEM and (b) XRD patterns of CPBN/CNN-3 after photocatalytic reaction.

Fig. S13 The AQE of CPBN/CNN-3.

Fig. S14 (a) GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of $H_2^{18}O$.

Fig. S15 GC-MS spectrum of the gas-phase products driven for CPBN/CNN-3 in the photocatalytic reduction of D_2O .

Sample	τ1/ns	A1/%	τ2/ns	A2/%	τ3/ns	A3/%	$ au_{average}/ns$
CNN	3.13	37.58	12.58	42.92	67.52	19.51	14.63
CPBN	0.85	32.05	4.96	39.86	43.37	28.09	12.57
CPBN/CNN-3	3.28	34.22	13.69	41.49	93.64	24.29	23.73

Table S1. Fitted PL decay parameters of CPBN, CNN and CPBN/CNN-3.

Sample	Yieldco /µmol g ⁻ 1	Yield _{CH4} /µmol g ⁻ 1	Yield ₀₂ /µmol g ⁻ 1	Yield _{products} /µmol g ⁻¹	Yield _{electron} /µmol g ^{-1 a}	R _{electron} ∕µmol g ⁻¹ h ^{-1 b}
CNN	12.9	15.3	30.6	28.2	148.2	37.1
CPBN/CNN-2	67.2	92.8	200.6	160.0	876.8	219.2
CPBN/CNN-3	105.2	184.0	398.3	289.2	1682.4	420.6
CPBN/CNN-4	79.2	114.0	245.0	193.2	1070.2	267.6
CPBN	16.8	17.6	35.4	34.4	174.4	43.6

Table S2. Summary of photocatalytic CO_2 reduction performances of different catalysts after irradiation for 4 h

The catalytic performances of samples were calculated according to the total weight of hybrid materials.

^a The electron consumption yield was calculated with the following equation:

 $Yield_{electron} = 2Yield_{CO} + 8Yield_{CH4}$

^b The electron consumption rate was calculated with the following equation:

 $R_{electron} = Yield_{electron} / 4h$

	Photoreduction product rate (μmol g ⁻¹ h ⁻¹)				
	0 ₂	0 ₂			
	(theoretical)	(measured)			
CNN	30.6	37.6			
CPBN/CNN-2	200.6	219.2			
CPBN/CNN-3	398.3	420.6			
CPBN/CNN-4	245.0	267.6			
CPBN	35.4	43.6			

Table S3. Comparison of the measured evolution rates of O_2 with its theoretical ones in terms of the amount of photoreduction products.

Sample	Condition	Yieldco /umol g ⁻¹	Yield _{CH4} /umol g ⁻¹	
		/ p	, p	
CPBN/CNN-3	Ethyl acetate/water	105.2	184.0	
CPBN/CNN-3	N ₂	3.6	5.9	
CPBN/CNN-3	Without light	0	0	
CPBN/CNN-3	Ethyl acetate	21.78	5.7	
No photocatalyst	Ethyl acetate/water	0	0	

Photocatalyst	Condition	Light source	Products /µmolg ⁻¹ h ⁻¹	R _{electron} / μmolg ⁻¹ h ⁻¹	Ref	AQE
CsPbBr ₃ /GO	ethyl acetate	100W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,4.9 CH ₄ ,2.5 H ₂ ,0.13	29.8	1	-
CsPbBr₃- Re(CO)₃Br(dcbpy)	Toluene /isopropanol	150W Xe Lamp AM1.5G,>420nm 150Mw/cm ⁻²	CO,34.8 CH ₄ ,1.9	73.4	2	-
MAPbl ₃ @PCN- 221(Fe _{0.2})	ethyl acetate /water	300W Xe Lamp >400nm 100Mw/cm ⁻²	CO,4.2 CH ₄ ,13	112	3	-
CsPbBr ₃ @ZIF-67	Gas (CO ₂ +H ₂ O)	100W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,0.8 CH₄,3.8	36.9	4	-
CsPbBr ₃ @ZIF-8	Gas (CO ₂ +H ₂ O)	100W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,0.5 CH ₄ ,1.8	15.5	4	-
CsPbBr ₃ NC /UIO-66(NH ₂)	ethyl acetate /water	300W Xe lamp >420nm	CO,8.2 CH ₄ ,0.3	18.5	5	-
CsPbBr₃ QDs ∕PCN	acetonitrile/ water	300W Xe lamp >420nm	CO,148.9	297.8	6	-
CsPbBr₃NC /a-TiO₂	ethyl acetate /isopropanol	150W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,3.9 CH₄,6.7 H₂,1.5	64.5	7	-
CsPbBr₃NC /Pd NC	Gas (CO ₂ +H ₂ O)	150W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,1.9 CH ₄ ,3.6 H ₂ ,1.1	33.8	8	0.017% (420 nm)
CsPbBr₃@CN	ethyl acetate	450W Xe Lamp AM1.5G	CO,3.1 CH ₄ ,22.9	189.4	9	-
PtCsPbBr ₃ / Bi ₂ WO ₆	ethyl acetate/ isopropanol	150W Xe Lamp AM1.5G 100Mw/cm ⁻²	CO,17.2 CH ₄ ,34.4 H ₂ ,7.4	324.0	10	-

Table S5. Summary of the photocatalytic CO_2 reduction performance of perovskite-based catalysts.

CsPbBr₃@TiO-CN	ethyl acetate /water	300W Xe lamp 100Mw/cm ⁻²	CO,12.9	25.8	11	-
CsPbBr₃ NCs /MXene-20	ethyl acetate	300W Xe Lamp >420nm	CO,26.6 CH ₄ ,6.8	107.6	12	-
α-Fe2O3/Amine- RGO/CsPbBr3	Gas (CO ₂ +H ₂ O)	150W Xe Lamp AM1.5G,>420nm 150Mw/cm ⁻²	CO,2.3 CH ₄ ,9.4 H ₂ ,0.3	80.7	13	-
CsPbBr ₃ /USGO/α-Fe ₂ O ₃	acetonitrile/w ater	300W Xe Lamp >400nm 100Mw/cm ⁻²	CO,73.8	147.6	14	-
CsPbBr ₃ /BP	ethyl acetate /water	300W Xe Lamp 200Mw/cm ⁻²	CO,44.7 CH ₄ ,10.7	175.0	15	-
CsPbBr ₃ QD _s /Bi ₂ WO ₆	ethyl acetate /water	>400nm 100Mw/cm ⁻²	CO+CH ₄ , 50.3	144.4	16	-
FAPbBr ₃ / Bi ₂ WO ₆	benzyl alcohol	150W Xe Lamp AM1.5G 100Mw/cm ⁻²	CO,170	340.0	17	1.2% (400 nm)
CsPbBr ₃ /C ₃ N ₄	ethyl acetate /water	150W Xe Lamp AM1.5G 150Mw/cm ⁻²	CO,26.3 CH ₄ ,46.0	420.6	This work	0.24% (420 nm)

References:

- Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang and C. Y. Su, J. Am. Chem. Soc., 2017, 139, 5660 - 5663.
- 2. Z.C. Kong, H.H. Zhang, J.F. Liao, Y.-J. Dong, Y. Jiang, H.Y. Chen and D.B. Kuang, *Solar RRL*, 2019, **4**, 1900365.
- 3. L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang and T.-B. Lu, *Angew. Chem., Int. Ed.*, 2019, **58**, 9491 9495.
- 4. Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang and C.-Y. Su, *ACS Energy Lett.*, 2018, **3**, 2656 2662.
- 5. S. Wan, M. Ou, Q. Zhong and X. Wang, *Chem. Eng. J.*, 2019, **358**, 1287 1295.
- 6. M. Ou, W. Tu and S. Yin, et al., Angew. Chem., 2018, **130**, 13758 13762.
- 7. Y. F. Xu, X. D. Wang, J. F. Liao, B. X. Chen, H. Y. Chen and D. B. Kuang, *Adv. Mater. Interfaces*, 2018, **5**, 1801015.
- Y.-F. Xu, M.-Z. Yang, H.-Y. Chen, J.-F. Liao, X.-D. Wang and D.-B. Kuang, ACS Appl. Energy Mater., 2018, 1, 5083 – 5089.
- 9. S.-Q. You, S.-H. Guo, X. Zhao, M. Sun, C.-Y. Sun, Z.-M. Su and X.-L. Wang, *Dalton Trans.*, 2019, **48**, 14115 —14121.
- 10. Y. Jiang, H. Chen, J. Li, J. Liao, H. Zhang, X. Wang and D. Kuang, *Adv. Funct. Mater.*, 2020, **30**, 2004293.
- 11. X.-X. Guo, S.-F. Tang, Y.-F. Mu, L.-Y. Wu, G.-X. Dong and M. Zhang, *RSC Adv.*, 2019, **9**, 34342 34348.
- 12. A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He and Y. Liu, *J. Phys. Chem. Lett.*, 2019, **10**, 6590 6597.
- 13. Y. Jiang, J. Liao, H. Chen, H. Zhang, J. Li, X. Wang and D. Kuang, *Chem*, 2020, **6**, 766 780.
- 14. Y. F. Mu, W. Zhang, G. X. Dong, K. Su, M. Zhang and T. B. Lu, *Small*, 2020, **16**, e2002140.
- 15. X. D. Wang, J. He, J. Y. Li, G. Lu, F. Dong, T. Majima and M. S. Zhu, *Appl. Catal., B*, 2020, **277**, 119230.
- 16. J. Wang, J. Wang, N. Li, X. Du, J. Ma, C. He and Z. Li, *ACS Appl. Mater. Interfaces*, 2020, **12**, 31477 31485.
- 17. H. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang, Z. Wang, Y. Weng, J. Long, J. Hofkens, J. A. Steele and M. B. J. Roeffaers, *ACS Nano*, 2020, **14**, 16689 16697.