Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Metallic La₃C₂ monolayer with remarkable activity for hydrogen evolution

reaction: a first-principles study

Huan Lou^{1,2}, and Guochun Yang^{1*}

1. State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

2. Department of Applied Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Corresponding Author

*E-mail:yanggc468@nenu.edu.cn; yanggc@ysu.edu.cn

Index

Page

1.	Computational details ····································							
2.	Top and side view of some lower-energy structures of the La_xC_y monolayers4							
3.	Calculated exfoliation energy of the La_xC_y monolayers							
4.	Phonon dispersive curves of the La_xC_y monolayers							
5.	Thermal stability of the La_xC_y monolayers							
6.	Calculated Youngs's modulus and Poisson's ratio of the La_xC_y monolayers							
7.	Electronic energy Band of the La_xC_y monolayers							
8.	ELF of the $La_x C_y$ monolayers \cdots 8							
9.	Schematic diagram of the optimized H atom at the active sites and of the La_3C_2 monolayer8							
10.	The relationship between the occupation of the La active orbitals of at Fermi level and the							
	activity site density in the corresponding monolayer and relationship between active site density							
	and biaxial strain of the La_3C_2 monolayer							
11.	Calculated Gibbs free energies on the La ₂ C and LaC ₂ monolayers at different coverages9							
12.	Calculated differential Gibbs free energies as a function of H coverage on B site of the La_3C_2							
	monolayer and H site of the La ₂ C ₃ monolayer 10							
13.	Calculated i_0 and ΔG_{H*} with increasing pH values of the La _x C _y monolayer10							
14.	Calculated differential Gibbs free energies as a function of H coverage on the La_xC_y monolayers							
	under strain ······11							
15.	HER pathways of the La ₃ C ₂ monolayer 12							
16.	Structural information of the $La_x C_y$ monolayers							
17.	Cohesive energy of the La_xC_y monolayers							
18.	Mulliken charge analysis of the La_xC_y monolayers							
19.	$\Delta G_{H* \text{ values}}$ of the $\text{La}_x C_y$							
	monolayers							
20.	Structural information of the La_xC_y monolayers with increasing H coverages15							
21.	References ····································							

Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code^{1,2} was employed to find the lowest energy structures of the La_xC_y (x = 1-4, y = 1-4) monolayers. Unit cells containing 1, 2, and 4 formula units (f.u.) were considered. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code³ were done with the conjugate gradients method and stopped when Gibbs free energy changes became smaller than 1×10^{-5} eV per cell. After processing the first-generation structures, 60% of them with lower Gibbs free energies are selected to construct the next generation structures by Particle Swarm Optimization (PSO). 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly for bidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000 ~ 1200 structures (*e.g.* about 20-30 generations).

The local structural relaxations and electronic properties calculations were performed in the framework of the density functional theory (DFT)⁴ within the generalized gradient approximation $(GGA)^5$ as implemented in the VASP code. The cutoff energy of the plane-wave expansions is set to 500 eV. First-principles molecular dynamics (MD)⁶ simulations for a large supercell were performed at different temperatures of 500 K. The supercells adopt $5 \times 5 \times 1$ for La₂C with *P*-3*m*1 symmetry, $5 \times 5 \times 1$ for La₃C₂ with *P*-3*m*1 symmetry, $3 \times 3 \times 1$ for La₂C₃ with *C*2/*m* symmetry, and $3 \times 4 \times 1$ for LaC₂ with *Pmmn* symmetry. MD simulation in NVT ensemble lasted for 10 ps with a time step of 1.0 fs. The temperature was controlled by using the Nosé-Hoover method.

Cohesive energy

Cohesive energy is widely used to ascertain the feasibility for experimental synthesis of the predicted 2D materials. Here, the cohesive energy E_{coh} is calculated based on the equation of

 $E_{coh} = (x \times E_{La} + y \times E_C - E_{La_x C_y})/(x + y)$, where E_{La} , E_C , and $E_{La_x C_y}$ are the energies of La, C

atom and 2D La_xC_y unit cell, respectively.

Supporting Figures

Figure S1. Top and side view of some other lower-energy structures of La_2C stoichiometric ratio along with structural symmetry and relative energy with respect to the *P*-3*m*1 La_2C monolayer.

Figure S2. Top and side view of some other lower-energy structures of La_3C_2 stoichiometric ratio along with structural symmetry and relative energy with respect to the *P*-3*m*1 La_3C_2 monolayer.

Figure S3. Top and side view of some other lower-energy structures of La_2C_3 stoichiometric ratio along with structural symmetry and relative energy with respect to the C2/m La₂C₃ monolayer.

Figure S4. Top and side view of some other lower-energy structures of La_2C stoichiometric ratio along with structural symmetry and relative energy with respect to the *Pmmn* La_2C monolayer.

Figure S5. Calculated exfoliation energy vs separation distance *d* for the La_xC_y monolayer deposited on the graphite surface with five atomic thickness, where *d* indicates the interlayer distance between La_xC_y and graphite.

Figure S6. Phonon dispersive curves of the (a) La_2C , (b) La_3C_2 , (c) La_2C_3 , and (d) LaC_2 monolayers. The phonon maximum frequencies of four monolayers are 428, 451, 1542, and 1651 cm⁻¹, respectively.

Figure S7. Snapshots of the final frame of the La_xC_y monolayers at time of 10 ps during AIMD simulations under the temperatures of 500 K, (a) La_2C , (b) La_3C_2 , (c) La_2C_3 , and (d) LaC_2 monolayers.

Figure S8. (Color online) Calculated orientation-dependent (a) Youngs's modulus $E(\theta)$, (b) Poisson's ratio $v(\theta)$ of the La₂C monolayer, (c) Youngs's modulus $E(\theta)$, and (d) Poisson's ratio $v(\theta)$ of the La₃C₂ monolayer.

Figure S9. (Color online) Calculated orientation-dependent (a) Youngs's modulus $E(\theta)$, (b) Poisson's ratio $v(\theta)$ of the La₂C₃ monolayer, (c) Youngs's modulus $E(\theta)$, and (d) Poisson's ratio $v(\theta)$ of the LaC₂ monolayer.

Based on Born-Huang stability criteria, the mechanical stability of La_xC_y (x = 2-3, y = 2-3) monolayers are estimated by the strain-energy method.⁷ The elastic constants of the La₂C monolayer are $C_{11} = 188.67$ N m⁻¹, $C_{12} = 56.65$ N m⁻¹, and $C_{66} = 66.01$ N m⁻¹ (Figures S8a-b). For the La₃C₂ monolayer, the elastic constants are $C_{11} = 277.47$ N m⁻¹, $C_{12} = 65.81$ N m⁻¹, and $C_{66} = 105.83$ N m⁻¹ (Figures S8c-d). Thus, the La₂C and La₃C₂ monolayers are satisfy the Born-Huang criteria of a mechanically stable 2D material (*e.g.* $C_{11} > 0$ and $C_{11} > |C_{12}|$). For the La₂C₃ monolayer, the elastic constants obtained are $C_{11} = 150.45$ N m⁻¹, $C_{12} = 61.47$ N m⁻¹, $C_{22} = 119.15$ N m⁻¹, and $C_{66} = 65.13$ N m⁻¹ (Figures S9a-b). The obtained elastic constants of the LaC₂ monolayer are $C_{11} = 125.57$ N m⁻¹, $C_{12} = -3.64$ N m⁻¹, $C_{22} = 38.52$ N m⁻¹, and $C_{66} = 14.10$ N m⁻¹ (Figures S9c-d). The La₂C₃ and LaC₂ monolayers satisfy the generalized elastic stability criteria as follows: $C_{11} > 0$, $C_{66} > 0$ and $C_{11} * C_{22} > C_{12} * C_{12}$. Therefore, the La₂C, La₃C₂, La₂C₃, and LaC₂ monolayers are mechanical stable.

Figure S10. Band structures of the (a) La_2C , (b) La_3C_2 , (c) La_2C_3 , and (d) LaC_2 monolayers. The red and blue solid lines are spin-up bands and spin-down bands, respectively.

Figure S11. Electron localization function (ELF) map and crystal structures of the (a) La_2C , (b) La_3C_2 , (c) La_2C_3 , and (d) LaC_2 monolayers.

Figure S12. Schematic diagram of the optimized hydrogen atom at the active sites of the La₃C₂ monolayer. (a) Parabolic shape is formed through the hydrogen atom on each active site T_{La1} , B, and T_{C} , (b) These active sites make up the windmill shape of wind-powered generation centered on La₁ atom. The green, black, and pink balls represent La, C, and H atoms, respectively.

Figure S13. (a) The relationship between the sum of La p, d, and f of at Fermi level and the activity site density in the corresponding monolayer. (b) The relationship between active site density and biaxial strain of the La_3C_2 monolayer.

Figure S14. Calculated differential Gibbs free energies as a function of H coverage on the La-C monolayers. (a) $d^{\Delta G}_{H*}$ and (b) $a^{\Delta G}_{H*}$ of the La₂C monolayer, (c) $d^{\Delta G}_{H*}$ and (d) $a^{\Delta G}_{H*}$ of the (b) LaC₂ monolayer. The highlighted in orange denotes the free energy window of ± 0.25 eV.

Figure S15. Calculated differential Gibbs free energies as a function of H coverage on the La-C monolayers. (a) $d^{\Delta G}_{H*}$ and (b) $a^{\Delta G}_{H*}$ for H adsorption on *B* site of the La₃C₂ monolayer, (c) $d^{\Delta G}_{H*}$ and (d) $a^{\Delta G}_{H*}$ for H adsorption on *H* site of the La₂C₃ monolayer.

Figure S16. (a) Volcano curve of exchange current density i_0 as a function of $d^{-\Delta G_{H*}}$ with increasing H coverage, H adsorption on *B* site of the La₃C₂ monolayer, (b) La₂C monolayer, (c) LaC₂ monolayer. The color changes from light to dark with H coverage. The value of Pt is inserted by a red star for comparison.

Figure S17. Variation of the free energies $(d - {}^{\Delta G}_{H*})$ of H adsorption as a function of the La_xC_y monolayers with strain, (a) La₂C, (b) La₃C₂, (c) La₂C₃, and (d) LaC₂ monolayers. The highlighted in orange denotes the free energy window of ± 0.25 eV.

Figure S18. Variation of the free energies $(a^{-\Delta G_H} *)$ of H adsorption as a function of the $La_x C_y$ monolayers with strain, (a) La_2C , (b) La_3C_2 , (c) La_2C_3 , and (d) LaC_2 monolayers. The highlighted in

orange denotes the free energy window of ± 0.25 eV.

Figure S19. Calculated differential Gibbs free energies as a function of H coverage on *B* site the La₃C₂ monolayer with strain, (a) $d^{-\Delta G_{H*}}$ and (b) $a^{-\Delta G_{H*}}$. The highlighted in orange denotes the free energy window of ± 0.25 eV.

Figure S20. The HER reaction processes of the La_3C_2 monolayer in the H_2O and H_3O^+ solvent. HER pathways via the (a) Volmer reaction, (b) Heyrovsky reaction, and (c) Tafel reaction of the La_3C_2 monolayer.

Supporting Tables

Dhasa	Space	Lattice	Wyckoff		Fractional Coordinates	
rnase	Group	Parameters	Positions			
		(Å, °)		x	У	Z
La ₂ C	<i>P</i> -3 <i>m</i> 1	<i>a</i> = 3.59130	La(2d)	0.33333	0.66667	0.56982
		<i>b</i> = 3.59130	C(1b)	0.00000	0.00000	0.50000
		c = 20.85170				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 120.0000$				
La_3C_2	<i>P</i> -3 <i>m</i> 1	a = 3.63580	$La_{1}(1b)$	0.00000	0.00000	0.50000
		b = 3.63580	$La_2(2d)$	0.33333	0.66667	0.60091
		c = 29.67060	C(2d)	0.33333	0.66667	0.44078
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 120.0000$				
La_2C_3	C2/m	a = 5.30520	La(4i)	0.86817	-0.00000	0.43675
		b = 5.07490	C ₁ (4i)	0.31297	-0.00000	0.46378
		c = 25.28520	C ₂ (2d)	0.50000	-0.00000	0.50000
		$\alpha = 90.0000$				
		$\beta = 89.2051$				
		$\gamma = 90.0000$				
LaC_2	Pmmn	<i>a</i> = 6.17010	La(2a)	0.50000	0.50000	0.48024
		b = 4.01830	C(4f)	0.60466	0.00000	0.55240
		c = 21.54000				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				

Table S2. Cohesive energy (E_{coh}) of the predicted La _x C _y ($x = 2-3, y = 2-3$) monolayers.						
	La-C monolayer	$E_{\rm coh}~({\rm eV})$				
	La_2C	7.39				
	La_3C_2	7.65				
	La_2C_3	7.44				
	LaC_2	7.07				

	La ₂ C		La	La ₃ C ₂		La ₂ C ₃		LaC ₂	
Atom	Charge	ΔG_{H*}	Charge	$\Delta G_{H *}$	Charge	ΔG_{H*}	Charge	ΔG_{H*}	
	(e)	(eV)	(e)	(eV)	(e)	(eV)	(e)	(eV)	
		0.58							
La ₁	0.79	-0.34	0.64	-0.09	1.84	2.52	2.12	2.44	
		0.19							
La ₂	-		-1.35	0.60	-	-	-		
C	1 58	0.45	1.67	0.24	1 37	0.34	1.06	0.20	
C_1	-1.56	-1.58 -0.45 -1.6	-1.07	-0.24	-1.57 0.54		-1.00	0.13	
C				$B(La_1-C)$	0.04	$B(C_1-C_2)$			
C_2	-	0.03	-0.94	-0.02	-				
						<i>H</i> -0.06		H 0.93	

Table S3. Mulliken charge (|e|) analysis of the La_xC_y (x = 2-3, y = 2-3) monolayers.

Table S4. Calculated d- ΔG_{H*} and a- ΔG_{H*} (eV) varying different H atoms (*n*) adsorbed on the La_xC_y (*x* = 2-3, *y* = 2-3) monolayers.

п	La ₂ C La ₃		₃ C ₂		La ₂ C ₃			La	C ₂			
site	ŀ	H	$T_{\rm I}$	lal	L	В	l	}	H	ſ	$T_{\rm C}$	2
1	0.19	0.19	-0.09	-0.09	0.03	0.03	-0.02	-0.02	-0.06	-0.06	0.13	0.13
2	0.10	0.15	-0.13	-0.11	~0.0	0.01	-0.04	-0.03	-0.001	-0.03	0.005	0.07
3	~0.0	0.10	-0.02	-0.08	0.03	0.02	-0.11	-0.06	-0.15	-0.07	0.07	0.07
4	0.13	0.10	0.04	-0.05	0.09	0.04	-0.03	-0.05	-0.006	-0.05	0.28	0.12
5	-0.48	-0.01	0.06	-0.03	0.10	0.05	-0.01	-0.04	-0.09	-0.06	0.34	0.16
6	-0.56	-0.10	-0.03	-0.03	0.11	0.06	0.01	-0.03	0.03	-0.05	0.12	0.17
7	0.04	-0.08	0.01	-0.02	0.14	0.07	0.28	0.01			0.42	0.20
8	-1.88	-0.31	-0.05	-0.02	0.17	0.08	0.55	0.08			0.35	0.22
9	2.84	0.04	0.02	-0.02	0.22	0.10					0.69	0.27
10					0.54	0.14						

Dhaga	Lattice	Wyckoff		Fractional Coordinates	
Phase	Parameters	Positions			
	(Å, °)		x	У	Z
La ₂ C	<i>a</i> = 10.80210	Lal	0.10823	0.21708	0.53736
	<i>b</i> = 10.80210	La2	0.22200	0.11086	0.46361
	c = 39.53650	La3	0.44051	0.21473	0.53772
	$\alpha = 90.0000$	La4	0.55544	0.11084	0.46361
	$\beta = 90.0000$	La5	0.77512	0.21709	0.53736
	$\gamma = 120.0000$	La6	0.88873	0.11085	0.46360
		La7	0.10826	0.55024	0.53712
		La8	0.22205	0.44416	0.46360
		La9	0.44054	0.55144	0.53768
		La10	0.55524	0.44388	0.46451
		La11	0.77718	0.55145	0.53768
		La12	0.88871	0.44415	0.46359
		La13	0.10813	0.88391	0.53711
		La14	0.22207	0.77756	0.46354
		La15	0.44206	0.88391	0.53711
		La16	0.55540	0.77741	0.46358
		La17	0.77504	0.88380	0.53733
		La18	0.88860	0.77742	0.46358
		C1	0.99812	0.99770	0.50028
		C2	0.33175	0.99705	0.49980
		C3	0.66605	0.99772	0.50028
		C4	0.99825	0.33006	0.50032
		C5	0.32220	0.325789	0.49937
		C6	0.67000	0.32582	0.49936
		C7	0.99872	0.66413	0.49979
		C8	0.33185	0.66414	0.49980
		C9	0.67002	0.67360	0.49935
		H1	0.55325	0.44024	0.52224
		H2	0.22279	0.77592	0.52224
		H3	0.88686	0.11032	0.52224
		H4	0.22156	0.44024	0.52224
		H5	0.88800	0.77411	0.52224
		H6	0.55342	0.77257	0.52224

Table S5. Structural information of the predicted La_xC_y (x = 2-3, y = 2-3) monolayers with increasing H coverage.

H	ł7	0.88809	0.44196	0.52224
H	18	0.55727	0.10816	0.52224
H	19	0.22207	0.11039	0.52224

D1	Lattice	Wyckoff		Fractional Coordinates	
Phase	Parameters	Positions			
	(Å, °)		x	У	Z
La ₃ C ₂	<i>a</i> = 10.91350	Lal	0.00015	0.00022	0.49967
	<i>b</i> = 10.91350	La2	0.11242	0.22283	0.57430
	c = 40.32710	La3	0.22218	0.11109	0.42538
	$\alpha = 90.0000$	La4	0.33346	0.00022	0.49967
	$\beta = 90.0000$	La5	0.44392	0.22285	0.57430
	$\gamma = 120.0000$	La6	0.55543	0.11119	0.42538
		La7	0.66669	0.00000	0.49952
		La8	0.77744	0.22138	0.57355
		La9	0.88903	0.11119	0.42538
		La10	0.00015	0.33324	0.49967
		La11	0.11101	0.55575	0.57377
		La12	0.22218	0.44444	0.42538
		La13	0.33336	0.33333	0.49964
		La14	0.44393	0.55433	0.57430
		La15	0.55552	0.44444	0.42538
		La16	0.66648	0.33324	0.49967
		La17	0.77826	0.55576	0.57377
		La18	0.88892	0.44458	0.42532
		La19	0.00003	0.66667	0.49956
		La20	0.11101	0.88851	0.57377
		La21	0.22204	0.77770	0.42532
		La22	0.33345	0.66654	0.49967
		La23	0.44541	0.88934	0.57355
		La24	0.55543	0.77759	0.42539
		La25	0.66648	0.66654	0.49967
		La26	0.77744	0.88933	0.57354
		La27	0.88892	0.77770	0.42532
		C1	0.11114	0.22224	0.45602
		C2	0.22166	0.10985	0.54319
		C3	0.44442	0.22224	0.45602
		C4	0.55839	0.10835	0.54274
		C5	0.77854	0.22378	0.45579
		C6	0.88335	0.10833	0.54274
		C7	0.11135	0.55529	0.45601
		C8	0.22166	0.44508	0.54319

	C9	0.44442	0.55551	0.45602
	C10	0.55689	0.44508	0.54319
	C11	0.77726	0.55530	0.45601
	C12	0.88970	0.44594	0.54290
	C13	0.11135	0.88939	0.45601
	C14	0.22080	0.77704	0.54290
	C15	0.44287	0.88810	0.45579
	C16	0.55840	0.78335	0.54274
	C17	0.77855	0.88810	0.45579
	C18	0.88970	0.77704	0.54290
Site T_{La1}	H1	0.33327	0.33335	0.61492
	H2	0.66575	0.33335	0.61492
	H3	0.99931	0.33335	0.61492
	H4	0.66753	0.66885	0.61492
	H5	0.33558	0.00171	0.61492
	H6	0.33455	0.66885	0.61492
	H7	0.00007	0.66770	0.61492
	H8	0.66654	0.00038	0.61492
	H9	0.00137	0.00195	0.61492
Site B	H1	0.28276	0.23209	0.54709
	H2	0.95440	0.56598	0.54709
	H3	0.61764	0.89936	0.54709
	H4	0.61567	0.23209	0.54709
	H5	0.27924	0.55974	0.54709
	H6	0.95270	0.23209	0.54709
	H7	0.28214	0.90316	0.54709
	H8	0.61569	0.55961	0.54709
	H9	0.94723	0.90108	0.54709

Dhasa	Lattice	Wyckoff	Ι	Fractional Coordinates	
Phase	Parameters	Positions			
	(Å, °)		x	у	Z
La_2C_3	<i>a</i> = 10.61520	Lal	0.43268	0.99709	0.45915
	<i>b</i> = 10.10080	La2	0.18342	0.24757	0.45984
	c = 39.68460	La3	0.07103	0.00689	0.54019
	$\alpha = 90.0000$	La4	0.31879	0.26232	0.54172
	$\beta = 89.2051$	La5	0.93361	0.99707	0.45943
	$\gamma = 90.0000$	La6	0.68237	0.24581	0.45979
		La7	0.56831	0.00700	0.54043
		La8	0.81947	0.25803	0.54033
		La9	0.43705	0.49675	0.45622
		La10	0.18355	0.74674	0.46000

	La11	0.07296	0.50686	0.54040
	La12	0.31899	0.75191	0.54187
	La13	0.92900	0.49717	0.45950
	La14	0.68250	0.74852	0.45993
	La15	0.56554	0.50661	0.53883
	La16	0.81949	0.75596	0.54051
	C1	0.15641	0.99929	0.47707
	C2	0.90655	0.24850	0.47689
	C3	0.34508	0.00436	0.52360
	C4	0.09723	0.25578	0.52302
	C5	0.25195	0.00176	0.50004
	C6	0.00130	0.25162	0.50007
	C7	0.65561	0.99928	0.47705
	C8	0.40716	0.24908	0.47653
	C9	0.84607	0.00489	0.52315
	C10	0.59511	0.25392	0.52327
	C11	0.75133	0.00205	0.50002
	C12	0.49994	0.25127	0.50016
	C13	0.15323	0.49886	0.47417
	C14	0.90685	0.75005	0.47705
	C15	0.34950	0.50460	0.51755
	C16	0.09759	0.75389	0.52318
	C17	0.25062	0.50174	0.49650
	C18	0.00151	0.75263	0.50026
	C19	0.65499	0.49929	0.47700
	C20	0.40753	0.74931	0.47658
	C21	0.84821	0.50490	0.52275
	C22	0.59517	0.75589	0.52340
	C23	0.75003	0.50213	0.50035
	C24	0.50006	0.75296	0.50027
	H1	0.28441	0.50343	0.57831
	H2	0.27204	0.99620	0.57949
	H3	0.05807	0.25291	0.58012
	H4	0.54091	0.24894	0.57954
	H5	0.06547	0.74892	0.58029
	H6	0.54091	0.74566	0.57963
	H7	0.80850	0.49964	0.58244
	H8	0.81801	0.00443	0.58246
Site H	H1	0.45299	0.35560	0.58163
	H2	0.45928	0.64530	0.58185
	H3	0.92993	0.61390	0.58044
	H4	0.70477	0.62951	0.58112
	Н5	0.17229	0.35518	0.58245
	H6	0.68501	0.35304	0.58094

D1	Lattice	Wyckoff	Fractional Coordinates		
Phase	Parameters	Positions			
	(Å, °)		x	У	Z
LaC ₂	<i>a</i> = 12.30500	Lal	0.24928	0.16802	0.48563
	<i>b</i> = 12.17860	La2	0.99307	0.00004	0.50682
	c = 37.00550	La3	0.74808	0.16699	0.48793
	$\alpha = 90.0000$	La4	0.49158	0.00004	0.50934
	$\beta = 90.0000$	La5	0.24946	0.50003	0.50031
	$\gamma = 90.0000$	La6	0.99219	0.32516	0.51297
		La7	0.75036	0.50001	0.48973
		La8	0.49155	0.33709	0.51358
		La9	0.24928	0.83201	0.48563
		La10	0.99219	0.67494	0.51297
		La11	0.74808	0.83303	0.48793
		La12	0.49155	0.66300	0.51358
		C1	0.28907	0.00006	0.52498
		C2	0.18386	0.00006	0.52448
		C3	0.95102	0.16963	0.46653
		C4	0.05594	0.16873	0.46584
		C5	0.79030	0.00006	0.52948
		C6	0.68546	0.00006	0.52956
		C7	0.45303	0.17066	0.46901
		C8	0.55762	0.16861	0.46885
		C9	0.28743	0.31312	0.53448
		C10	0.18319	0.31744	0.53505
		C11	0.95538	0.50000	0.47743
		C12	0.06088	0.50000	0.47818
		C13	0.79069	0.32957	0.52994
		C14	0.68571	0.33389	0.52994
		C15	0.44809	0.50000	0.46690
		C16	0.55209	0.49999	0.46667
		C17	0.28743	0.68703	0.53448
		C18	0.18319	0.68270	0.53505
		C19	0.95102	0.83036	0.46653
		C20	0.05594	0.83126	0.46584
		C21	0.79069	0.67055	0.52994
		C22	0.68571	0.66623	0.52994
		C23	0.45303	0.82934	0.46901

С	24	0.55762	0.83138	0.46885
E	[1	0.41122	0.50008	0.53930
E	[2	0.58337	0.16616	0.53391
H	[3	0.09689	0.50015	0.54588
H	[4	0.07816	0.83270	0.53592
H	[5	0.56866	0.49789	0.53441
H	[6	0.43888	0.83202	0.53849
H	[7	0.43681	0.16853	0.53846
H	[8	0.59343	0.83736	0.53369

References

- 1 Y. Wang, J. Lv, L. Zhu and Y. Ma, *Comput. Phys. Commun.*, 2012, **183**, 2063–2070.
- 2 Y. Wang, J. Lv, L. Zhu and Y. Ma, *Phys. Rev. B.*, 2010, **82**, 094116.
- 3 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 4 J. Y. Jung, J. H. Park, Y. J. Jeong, K. H. Yang, N. K. Choi, S. H. Kim and W. J. Kim, *Phys. Rev.*, 1965, **140**, A1133–A1138.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 6 G. J. Martyna, M. L. Klein and M. Tuckerman, J. Chem. Phys., 1992, 97, 2635–2643.
- S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N.
 Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. J. Mortensen,
 T. Olsen and K. S. Thygesen, *2D Mater.*, 2019, 048001.