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Figure S2. LSV curves of (10CeCrP)CoOx-NF, (10CeCrP)CoOx-NF-HER, (CrP)CoOx-NF, (CrP)CoOx-NF-HER, 

(P)CoOx-NF and (P)CoOx-NF-HER within 0 ~ -0.3 V.
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Figure S3. CV curves: (a) (10CeCrP)CoOx-NF-HER, (b) (CrP)CoOx-NF-HER and (c) (P)CoOx-NF-HER with 

different scan rates. (d) ECSAs of (10CeCrP)CoOx-NF-HER, (CrP)CoOx-NF-HER and (P)CoOx-NF-HER.

Figure S4. Co3O4 unit cell. Cell volume: 144.3 Å3; total atoms: 14 (6Co + 8O) (Blue: Co, red: O).
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Figure S5. LSV curves of (P)CoOx-NF-HER, (CeP)CoOx-NF-HER, (CrP)CoOx-NF-HER and (xCeCrP)CoOx-NF-

HER at different potential intervals: (a) 0 ~ -0.3 V and (b) 0 ~ -1.0 V.

Figure S6. The theoretically calculated (red line) and experimentally measured (colored dots) hydrogen vs. time for 

(P)CoOx-NF-HER, (CrP)CoOx-NF-HER and (10CeCrP)CoOx-NF-HER at 20 mA cm-2. 
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Table S1. Comparison of (10CeCrP)CoOx-NF-HER and other reported electrocatalysts with similar composition in 1 

M KOH.

Electrocatalyst

Loading 

mass/mg per 

cm2

Current 

density/mA cm-2 

(Potential/V vs. 

RHE)

iR-

correction
Reference

(10CeCrP)CoOx-NF-HER 0.31

10 (-0.128)

50 (-0.193)

100 (-0.245)

200 (-0.354)

500 (-0.580)

No This work

CoFeOx(OH)y/CoOx(OH)y 0.27

10 (-0.26)

50 (-0.32)

100 (-0.37)

Corrected
Electrochimica 

Acta 391 (2020) 

136038

Co-WC@G/

PCSs
0.85

30 (-0.17)

100 (-0.2)
Corrected

ACS Appl. Nano 

Mater. 2021, 4, 

11870−11880

CoP@BCN 0.4
10 (-0.210)

20 (-0.280)
No

Adv. Energy 

Mater. 2017, 

1601671

CoP@CoOx 1.5
50 (-0.1)

100 (-0.109)
Corrected

ACS Appl. 

Energy Mater. 

2020, 3, 309−318

Ru/Co4N-CoF2 3.5

10 (-0.053)

50 (-0.175)

100 (-0.220)

95% iR 

compensation
Chem. Eng. J. 414 

(2021) 128865

CoP@a-CoOx plate 1.5
10 (-0.18)

100 (-0.25)
Corrected

Adv. Sci. 2018, 5, 

1800514

Co-CoO/ZnFe2O4@CNWs 0.5
10 (-0.226)

20 (-0.30)
--

J. Colloid and 

Interface Sci. 561 

(2020) 620–628

N-C-Co20-100Pd 3.5
10 (-0.140)

50 (-0.150)

95% iR 

compensation

J. Mater. Chem. 

A, 2021, 9, 

17724–17739

CoP/N-doped carbon 0.42
10 (-0.167)

25 (-0.180)
No

Electrochimica 

Acta 375 (2021) 

137966

Co/CoOx -- 10 (-0.220) No Nano Energy 32 
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nanoshoots/perovskite 50 (-0.270)

100 (-0.30)

(2017) 247–254

NiCo-N

-O nanosheet hybrids
--

50 (-0.150)

100 (-0.190)

90% iR 

compensation

Mater. Today 

Energy 21 (2021) 

100784

CoOx-N-C/TiO2C 0.283 10 (-0.38) No
Journal of Power 

Sources 414 

(2019) 333–344

VZn-ZnCoPi-OH 12
50 (-0.160)

100 (-0.180)

95% iR 

compensation

Mater. Today 

Phys. 20 (2021) 

100448

CoOx catalyst in-situ grown on 

Co foam
---

20 (-0.112)

50 (-0.150)

100 (-0.190)

iR 

compensation
Front. Chem., 

2020, 8, 386 

CoP/o-CC 0.32

50 (-0.20)

100 (-0.23)

200 (-0.260)

Corrected
Inter. J. Hydrogen 

Energy. 2022 47 

9209

CoFe/NH-C NS 1.8
10 (-0.28)

50 (-0.350)
Corrected

ACS Sustainable 

Chem. Eng. 2019, 

7, 15278−15288

Co@C/NC 0.4

10 (-0.175)

50 (-0.280)

100 (-0.370)

80% iR 

compensation

Energy Fuels 

2022, 36, 

1688−1696

Ni, S‑Codoped CoO 0.87

50 (-0.180)

100 (-0.225)

200 (-0.250)

Corrected
ACS Sustainable 

Chem. Eng. 2019, 

7, 12501−12509

CFC-CNT-CoOx/CoP 0.41
10 (-0.108)

50 (-0.152)

90% iR 

compensation

Chem. 

Engineering J. 

416 (2021) 

128943

CoOx/CoNy@CN 0.283

10 (-0.320)

50 (-0.380)

80 (-0.410)

Corrected
Appl. Cat. B: 

Environ. (2020) 

279 119407

Co-NiS2 NSs 0.84

10 (-0.08)

50 (-0.160)

100 (-0.20)

Corrected 
Angew. Chem. 

Int. Ed. 2019, 58, 

18676 – 18682

N-doped CoO nanowire arrays --
10 (-0.123)

50 (-0.220)
--

Catalysts 2021, 

11, 1237
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Figure S7. SEM images: (a-b) (10CeCrP)CoOx-NF, (c-d) (CrP)CoOx-NF, and (e-f) (P)CoOx-NF.
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Figure S8. EDS spectrum of (P)CoOx-NF-HER.

Table S2. Elemental composition of (P)CoOx-NF-HER

Element Atomic %

O 11.56

P 2.11

Co 34.89

Ni 51.45

Total: 100.00
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Figure S9. EDS spectrum of (CrP)CoOx-NF-HER.

Table S3. Elemental composition of (CrP)CoOx-NF-HER

Element Atomic %

O 45.68

P 3.39

Cr 0.08

Co 28.00

Ni 22.84

Ce 0.00

Total: 100.00
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Figure S10. EDS spectrum of (10CeCrP)CoOx-NF-HER.

Table S4. Elemental composition of (10CeCrP)CoOx-NF-HER

Element Atomic/%

O 36.15

P 0.59

Cr 0.12

Co 11.81

Ni 51.11

Ce 0.21

Total: 100.00
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Figure S11. (CrP)CoOx-NF-HER: (a) TEM image, (b) STEM-HAADF, and (c-d) EDS elemental mappings of Co and 

O. (P)CoOx-NF-HER: (e) TEM image, (f) STEM-HAADF, and (g-h) EDS elemental mappings of Co and O.
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Figure S12. Raman spectra of (P)CoOx-NF, (CrP)CoOx-NF and (10CeCrP)CoOx-NF before and after HER.

The Raman spectra (Figure S12) show that (CrP)CoOx-NF and (P)CoOx-NF-HER show negligible 

characteristic peak of CoOx However, the peaks are obvious after the HER test.1, 2 Meanwhile, we can 

also see that the intensities of CoOx characteristic peaks of (10CeCrP)CoOx-NF-HER are stronger than 

those of (10CeCrP)CoOx-NF. Therefore, the crystallinity of CoOx was enhanced during HER. 
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Figure S13. XPS spectra of (a) (10CeCrP)CoOx-NF, (b) (CrP)CoOx-NF and (c) (P)CoOx-NF before and after HER.

The chemical states of Co in (P)CoOx-NF, (CrP)CoOx-NF and (10CeCrP)CoOx-NF before and after 

HER were studied by XPS. The Co 2p XPS spectra of (10CeCrP)CoOx-NF and (10CeCrP)CoOx-NF-HER 

have eight main peaks, including Co 2p3/2 and 2p1/2 peaks for both Co3+ and Co2+ in Co3O4, as well as 

their satellite peaks (Figure S13a). The Co 2p spectrum of (CrP)CoOx-NF-HER shows eight main peaks 

too. But the Co 2p spectrum of (CrP)CoOx-NF shows ten main peaks, including Co 2p3/2 and 2p1/2 peaks 

for metallic Co (Co0), and their satellite peaks (Figure S13b). For the Co 2p spectra of (P)CoOx-NF and 

(P)CoOx-NF-HER, eight main peaks for both Co3+ and Co2+ in Co3O4, as well as their satellite peaks can 

be seen (Figure S13c).3-5 Comparing the Co 2p spectra of (P)CoOx-NF, (CrP)CoOx-NF and 

(10CeCrP)CoOx-NF before and after HER, the peak intensities and areas of different Co characteristic 

signals change, suggesting the chemical states of Co change during the HER process.
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Figure S14. XPS spectra of (10CeCrP)CoOx-NF and (10CeCrP)CoOx-NF-HER. (a) Ce 3d; (b) Cr 2p and (c) P 2p. 
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Figure S15. (a) Cr 2p and (b) P 2p XPS spectra of (CrP)CoOx-NF and (CrP)CoOx-NF-HER.

Figure S16. P 2p XPS spectra of (P)CoOx-NF and (P)CoOx-NF-HER. 

The chemical states of Cr, Ce and P in the electrocatalysts were studied by XPS. We can see that for 

the XPS spectra of (10CeCrP)CoOx-NF and (10CeCrP)CoOx-NF-HER, no obvious Ce 3d, Cr 2p and P 2p 

characteristic peaks can be observed (Figure S14). Meanwhile, the XPS spectra of (CrP)CoOx-NF and 

(CrP)CoOx-NF-HER show no obvious characteristic peaks of Cr 2p and P 2p too (Figure S15). For the 

XPS spectrum of (P)CoOx-NF, two characteristic peaks can be observed, represent PO4
3- and its satellite 

peak.6, 7 Compared with (P)CoOx-NF, those characteristic peaks of (P)CoOx-NF-HER become weaker, 

suggesting the P element leaches out during HER (Figure S16). Those results suggest that the Ce, Cr and 

P plays negligible role in HER. 
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Figure S17. Potential-time dependent curves of (a) (P)CoOx-NF-HER, (b) (CrP)CoOx-NF-HER and (c) 

(10CeCrP)CoOx-NF-HER measured at 2~10 mA cm-2.
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Figure S18. Raman spectra: (a) (P)CoOx-NF-HER and (b) (CrP)CoOx-NF-HER.

Figure S19. Plots of charge-current density for (10CeCrP)CoOx-NF-HER, (CrP)CoOx-NF-HER and (P)CoOx-NF-

HER.
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Figure S20. Scheme of different interactions between protons and probe molecule (NH3) on (10CeCrP)CoOx-NF-

HER, (CrP)CoOx-NF-HER and (P)CoOx-NF-HER.

Figure S21. Nyquist plots of (a) (10CeCrP)CoOx-NF-HER, (b) (CrP)CoOx-NF-HER and (c) (P)CoOx-NF-HER. Inset: 

the electronic circuit utilized to fit the curve.
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Table S5. The fitted parameters of the EIS data of the (10CeCrP)CoOx-NF-HER, (CrP)CoOx-NF-HER and (P)CoOx-

NF-HER.

Catalyst Potential/V 

vs. RHE
Rs/Ω CT/(F Sn)-1 Cp R1/Ω R2/Ω Cφ/F

-0.13 1.342 0.0189 0.8874 1.683 38.07 0.00532

-0.15 1.341 0.0172 0.8847 1.158 22.15 0.00552

-0.17 1.343 0.0150 0.9015 1.08 11.55 0.00640

-0.19 1.341 0.0134 0.8971 0.6728 6.299 0.00678

(10CeCrP)CoOx-

NF-HER

-0.21 1.353 0.0108 0.9308 0.6298 3.223 0.00811

-0.13 1.409 0.0131 0.8440 2.028 69.92 0.00267

-0.15 1.409 0.0107 0.8582 1.345 27.91 0.00306

-0.17 1.404 0.0088 0.8659 0.9108 12.95 0.00339

-0.19 1.409 0.00680 0.8825 0.5765 6.22 0.00377

(CrP)CoOx-NF-

HER

-0.21 1.404 0.00448 0.9096 0.4051 3.379 0.00442

-0.13 2.032 0.00770 0.8368 54.68 122.6 0.000428

-0.15 2.038 0.00687 0.8542 36.39 44.69 0.00254

-0.17 2.035 0.00619 0.8663 16.26 16.38 0.00193

-0.19 2.003 0.00450 0.8513 1.009 13.2 0.00137

(P)CoOx-NF-HER

-0.21 1.991 0.00279 0.8754 0.5391 6.508 0.00189

Nyquist plots were simulated by a double-parallel equivalent circuit model. The first parallel components (CT and R1) 

reflect the charge-transfer kinetics, in which CT is related to the double layer capacitance and R1 represents catalytic 

charge-transfer resistance.8-10
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