## Nanocrystalline CoO<sub>x</sub> Glass for Highly-efficient Alkaline Hydrogen Evolution Reaction

Jinxian Feng <sup>*a*</sup>, Lulu Qiao <sup>*a*</sup>, Pengfei Zhou <sup>*a*</sup>, Haoyun Bai <sup>*a*</sup>, Chunfa Liu <sup>*a*</sup>, Chon Chio Leong <sup>*b*</sup>, Yu-Yun Chen <sup>*a*</sup>, Weng Fai Ip <sup>*c*</sup>, Jun Ni <sup>*d*</sup> and Hui Pan <sup>*ac*</sup> \*

<sup>a</sup> Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., China <sup>b</sup> Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macao S. A. R., China

<sup>c</sup> Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao S. A. R., China

<sup>d</sup> Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China Hui Pan: <u>huipan@um.edu.mo</u> (email), +853-88224427 (tel.), +853-88222454 (fax).



Figure S1. LSV curves of (10CeCrP)CoO<sub>x</sub>-NF, (CrP)CoO<sub>x</sub>-NF, (P)CoO<sub>x</sub>-NF and NF.



Figure S2. LSV curves of  $(10 \text{CeCrP})\text{CoO}_x$ -NF,  $(10 \text{CeCrP})\text{CoO}_x$ -NF-HER,  $(\text{CrP})\text{CoO}_x$ -NF,  $(\text{CrP})\text{CoO}_x$ -NF-HER,  $(P)\text{CoO}_x$ -NF and  $(P)\text{CoO}_x$ -NF-HER within  $0 \sim -0.3$  V.



**Figure S3.** CV curves: (a)  $(10\text{CeCrP})\text{CoO}_x$ -NF-HER, (b)  $(\text{CrP})\text{CoO}_x$ -NF-HER and (c)  $(P)\text{CoO}_x$ -NF-HER with different scan rates. (d) ECSAs of  $(10\text{CeCrP})\text{CoO}_x$ -NF-HER,  $(\text{CrP})\text{CoO}_x$ -NF-HER and  $(P)\text{CoO}_x$ -NF-HER.



Figure S4. Co<sub>3</sub>O<sub>4</sub> unit cell. Cell volume: 144.3 Å<sup>3</sup>; total atoms: 14 (6Co + 8O) (Blue: Co, red: O).



Figure S5. LSV curves of (P)CoO<sub>x</sub>-NF-HER, (CeP)CoO<sub>x</sub>-NF-HER, (CrP)CoO<sub>x</sub>-NF-HER and (xCeCrP)CoO<sub>x</sub>-NF-HER at different potential intervals: (a)  $0 \sim -0.3$  V and (b)  $0 \sim -1.0$  V.



**Figure S6.** The theoretically calculated (red line) and experimentally measured (colored dots) hydrogen vs. time for (P)CoO<sub>x</sub>-NF-HER, (CrP)CoO<sub>x</sub>-NF-HER and (10CeCrP)CoO<sub>x</sub>-NF-HER at 20 mA cm<sup>-2</sup>.

**Table S1.** Comparison of  $(10 \text{CeCrP})\text{CoO}_x$ -NF-HER and other reported electrocatalysts with similar composition in 1 M KOH.

|                                                                          |                 | Current                     |                                |                    |  |
|--------------------------------------------------------------------------|-----------------|-----------------------------|--------------------------------|--------------------|--|
|                                                                          | Loading         | density/mA cm <sup>-2</sup> | iR-                            |                    |  |
| Electrocatalyst                                                          | mass/mg per     | (Potential/V vs.            | correction                     | Reference          |  |
|                                                                          | cm <sup>2</sup> | RHE)                        |                                |                    |  |
|                                                                          |                 | 10 (-0.128)                 |                                | This work          |  |
|                                                                          |                 | 50 (-0.193)                 |                                |                    |  |
| (10CeCrP)CoO <sub>x</sub> -NF-HER                                        | 0.31            | 100 (-0.245)                | No                             |                    |  |
|                                                                          |                 | 200 (-0.354)                |                                |                    |  |
|                                                                          |                 | 500 (-0.580)                |                                |                    |  |
|                                                                          |                 | 10 (-0.26)                  |                                | Electrochimica     |  |
| CoFeO <sub>x</sub> (OH) <sub>y</sub> /CoO <sub>x</sub> (OH) <sub>y</sub> | 0.27            | 50 (-0.32)                  | Corrected                      | Acta 391 (2020)    |  |
|                                                                          |                 | 100 (-0.37)                 |                                | 136038             |  |
| Co-WC@G/                                                                 |                 | 30 (-0.17)                  |                                | ACS Appl. Nano     |  |
| PCSs                                                                     | 0.85            | 100 (-0.2)                  | Corrected                      | Mater. 2021, 4,    |  |
|                                                                          |                 | 100 (002)                   |                                | 11870-11880        |  |
|                                                                          | 0.4             | 10 (-0.210)                 | No                             | Adv. Energy        |  |
| COP@BCN                                                                  |                 | 20 (-0.280)                 | INU                            | 1601671            |  |
|                                                                          | 1.5             | 50 ( 0 1)                   |                                | ACS Appl.          |  |
| CoP@CoO <sub>x</sub>                                                     |                 | 50 (-0.1)                   | Corrected                      | Energy Mater.      |  |
|                                                                          |                 | 100 (-0.109)                |                                | 2020, 3, 309–318   |  |
|                                                                          | 3.5             | 10 (-0.053)                 | 95% iR                         | Chem Eng I 414     |  |
| Ru/Co <sub>4</sub> N-CoF <sub>2</sub>                                    |                 | 50 (-0.175)                 | compensation                   | (2021) 128865      |  |
|                                                                          |                 | 100 (-0.220)                | <b>c</b> omp <b>c</b> illation | () 120000          |  |
| CoP@a-CoO_plate                                                          | 1.5             | 10 (-0.18)                  | Corrected                      | Adv. Sci. 2018, 5, |  |
| $\cos \omega a - \cos \omega x$ plate                                    |                 | 100 (-0.25)                 | contented                      | 1800514            |  |
| Co-CoO/ZnFe <sub>2</sub> O <sub>4</sub> @CNWs                            | 0.5             | 10 (-0.226)                 |                                | J. Colloid and     |  |
|                                                                          |                 | 20 (-0.30)                  |                                | Interface Sci. 561 |  |
|                                                                          |                 |                             |                                | (2020) 620–628     |  |
| N-C-Co20-100Pd                                                           | 3.5             | 10 (-0.140)                 | 95% iR                         | J. Mater. Chem.    |  |
|                                                                          |                 | 50 (-0.150)                 | compensation                   | 17724–17739        |  |
|                                                                          | 0.42            | 10 (-0 167)                 |                                | Electrochimica     |  |
| CoP/N-doped carbon                                                       |                 | 25(0.107)                   | No                             | Acta 375 (2021)    |  |
|                                                                          |                 | 23 (-0.180)                 |                                | 137966             |  |
| Co/CoO <sub>x</sub>                                                      |                 | 10 (-0.220)                 | No                             | Nano Energy 32     |  |

| nanoshoots/perovskite                    |       | 50 (-0.270)  |              | (2017) 247–254             |  |
|------------------------------------------|-------|--------------|--------------|----------------------------|--|
|                                          |       | 100 (-0.30)  |              |                            |  |
| NiCo-N                                   |       | 50 (-0.150)  | 90% iR       | Mater. Today               |  |
| -O nanosheet hybrids                     |       | 100 (-0.190) | compensation | Energy 21 (2021)<br>100784 |  |
|                                          |       |              |              | Journal of Power           |  |
| CoO <sub>x</sub> -N-C/TiO <sub>2</sub> C | 0.283 | 10 (-0.38)   | No           | Sources 414                |  |
|                                          |       |              |              | (2019) 333–344             |  |
| V- 7nCoDi OH                             | 12    | 50 (-0.160)  | 95% iR       | Mater. 1 oday              |  |
| V <sub>Zn</sub> -ZnCoPI-OH               |       | 100 (-0.180) | compensation | 100448                     |  |
| CoO antolyst in sity grown on            |       | 20 (-0.112)  | ;D           |                            |  |
| $CoO_x$ catalyst in-situ grown on        |       | 50 (-0.150)  | IK           | Front. Chem.,              |  |
| Co toam                                  |       | 100 (-0.190) | compensation | 2020, 8, 386               |  |
|                                          |       | 50 (-0.20)   |              | Inter. J. Hydrogen         |  |
| CoP/o-CC                                 | 0.32  | 100 (-0.23)  | Corrected    | Energy. 2022 47            |  |
|                                          |       | 200 (-0.260) |              | 9209                       |  |
| CoFe/N <sub>H</sub> -C NS                | 1.8   | 10 (-0.28)   |              | ACS Sustainable            |  |
|                                          |       | 50 (-0.350)  | Corrected    | Chem. Eng. 2019,           |  |
|                                          |       | 10 ( 0.175)  |              | 7, 15278–15288             |  |
|                                          | 0.4   | 10 (-0.175)  | 80% iR       | Energy Fuels               |  |
| Co@C/NC                                  | 0.4   | 50 (-0.280)  | compensation | 2022, 36,                  |  |
|                                          |       | 100 (-0.370) |              | 1688-1696                  |  |
|                                          |       | 50 (-0.180)  |              | ACS Sustainable            |  |
| Ni, S-Codoped CoO                        | 0.87  | 100 (-0.225) | Corrected    | Chem. Eng. 2019,           |  |
|                                          |       | 200 (-0.250) |              | 7, 12501–12509             |  |
|                                          | 0.41  | 10 (-0 108)  | 90% iP       | Chem.                      |  |
| CFC-CNT-CoO <sub>x</sub> /CoP            |       | 50 ( 0 152)  | compensation | 416(2021)                  |  |
|                                          |       | 50 (-0.152)  | compensation | 128943                     |  |
|                                          |       | 10 (-0.320)  |              | Appl. Cat. B:              |  |
| CoO <sub>x</sub> /CoN <sub>y</sub> @CN   | 0.283 | 50 (-0.380)  | Corrected    | Environ. (2020)            |  |
|                                          |       | 80 (-0.410)  |              | 279 119407                 |  |
|                                          |       | 10 (-0.08)   |              | Angew. Chem.               |  |
| Co-NiS <sub>2</sub> NSs                  | 0.84  | 50 (-0.160)  | Corrected    | Int. Ed. 2019, 58,         |  |
|                                          |       | 100 (-0.20)  |              | 18676 - 18682              |  |
| N danad CaO mana '                       |       | 10 (-0.123)  |              | Catalysts 2021,            |  |
| in-uoped CoO nanowire arrays             |       | 50 (-0.220)  |              | 11, 1237                   |  |



Figure S7. SEM images: (a-b) (10CeCrP)CoO<sub>x</sub>-NF, (c-d) (CrP)CoO<sub>x</sub>-NF, and (e-f) (P)CoO<sub>x</sub>-NF.



**Figure S8.** EDS spectrum of (P)CoO<sub>x</sub>-NF-HER.

Table S2. Elemental composition of (P)CoO<sub>x</sub>-NF-HER

| Element | Atomic % |  |  |  |
|---------|----------|--|--|--|
| 0       | 11.56    |  |  |  |
| Р       | 2.11     |  |  |  |
| Co      | 34.89    |  |  |  |
| Ni      | 51.45    |  |  |  |
| Total:  | 100.00   |  |  |  |



Figure S9. EDS spectrum of (CrP)CoO<sub>x</sub>-NF-HER.

Table S3. Elemental composition of (CrP)CoO<sub>x</sub>-NF-HER

| Element | Atomic % |  |  |  |
|---------|----------|--|--|--|
| 0       | 45.68    |  |  |  |
| Р       | 3.39     |  |  |  |
| Cr      | 0.08     |  |  |  |
| Со      | 28.00    |  |  |  |
| Ni      | 22.84    |  |  |  |
| Ce      | 0.00     |  |  |  |
| Total:  | 100.00   |  |  |  |



Figure S10. EDS spectrum of (10CeCrP)CoO<sub>x</sub>-NF-HER.

Table S4. Elemental composition of (10CeCrP)CoO<sub>x</sub>-NF-HER

| Element | Atomic/% |
|---------|----------|
| 0       | 36.15    |
| Р       | 0.59     |
| Cr      | 0.12     |
| Co      | 11.81    |
| Ni      | 51.11    |
| Ce      | 0.21     |
| Total:  | 100.00   |



**Figure S11.** (CrP)CoO<sub>x</sub>-NF-HER: (a) TEM image, (b) STEM-HAADF, and (c-d) EDS elemental mappings of Co and O. (P)CoO<sub>x</sub>-NF-HER: (e) TEM image, (f) STEM-HAADF, and (g-h) EDS elemental mappings of Co and O.



Figure S12. Raman spectra of (P)CoO<sub>x</sub>-NF, (CrP)CoO<sub>x</sub>-NF and (10CeCrP)CoO<sub>x</sub>-NF before and after HER.

The Raman spectra (Figure S12) show that  $(CrP)CoO_x$ -NF and  $(P)CoO_x$ -NF-HER show negligible characteristic peak of  $CoO_x$  However, the peaks are obvious after the HER test.<sup>1, 2</sup> Meanwhile, we can also see that the intensities of  $CoO_x$  characteristic peaks of  $(10CeCrP)CoO_x$ -NF-HER are stronger than those of  $(10CeCrP)CoO_x$ -NF. Therefore, the crystallinity of  $CoO_x$  was enhanced during HER.



Figure S13. XPS spectra of (a) (10CeCrP)CoO<sub>x</sub>-NF, (b) (CrP)CoO<sub>x</sub>-NF and (c) (P)CoO<sub>x</sub>-NF before and after HER.

The chemical states of Co in (P)CoO<sub>x</sub>-NF, (CrP)CoO<sub>x</sub>-NF and (10CeCrP)CoO<sub>x</sub>-NF before and after HER were studied by XPS. The Co 2p XPS spectra of (10CeCrP)CoO<sub>x</sub>-NF and (10CeCrP)CoO<sub>x</sub>-NF-HER have eight main peaks, including Co  $2p_{3/2}$  and  $2p_{1/2}$  peaks for both Co<sup>3+</sup> and Co<sup>2+</sup> in Co<sub>3</sub>O<sub>4</sub>, as well as their satellite peaks (Figure S13a). The Co 2p spectrum of (CrP)CoO<sub>x</sub>-NF-HER shows eight main peaks too. But the Co 2p spectrum of (CrP)CoO<sub>x</sub>-NF shows ten main peaks, including Co  $2p_{3/2}$  and  $2p_{1/2}$  peaks for metallic Co (Co<sup>0</sup>), and their satellite peaks (Figure S13b). For the Co 2p spectra of (P)CoO<sub>x</sub>-NF and (P)CoO<sub>x</sub>-NF-HER, eight main peaks for both Co<sup>3+</sup> and Co<sup>2+</sup> in Co<sub>3</sub>O<sub>4</sub>, as well as their satellite peaks can be seen (Figure S13c).<sup>3-5</sup> Comparing the Co 2p spectra of (P)CoO<sub>x</sub>-NF, (CrP)CoO<sub>x</sub>-NF and (10CeCrP)CoO<sub>x</sub>-NF before and after HER, the peak intensities and areas of different Co characteristic signals change, suggesting the chemical states of Co change during the HER process.



Figure S14. XPS spectra of (10CeCrP)CoO<sub>x</sub>-NF and (10CeCrP)CoO<sub>x</sub>-NF-HER. (a) Ce 3d; (b) Cr 2p and (c) P 2p.



Figure S15. (a) Cr 2p and (b) P 2p XPS spectra of (CrP)CoO<sub>x</sub>-NF and (CrP)CoO<sub>x</sub>-NF-HER.



**Figure S16.** P 2p XPS spectra of (P)CoO<sub>x</sub>-NF and (P)CoO<sub>x</sub>-NF-HER.

The chemical states of Cr, Ce and P in the electrocatalysts were studied by XPS. We can see that for the XPS spectra of  $(10CeCrP)CoO_x$ -NF and  $(10CeCrP)CoO_x$ -NF-HER, no obvious Ce 3d, Cr 2p and P 2p characteristic peaks can be observed (Figure S14). Meanwhile, the XPS spectra of (CrP)CoO\_x-NF and (CrP)CoO\_x-NF-HER show no obvious characteristic peaks of Cr 2p and P 2p too (Figure S15). For the XPS spectrum of (P)CoO\_x-NF, two characteristic peaks can be observed, represent PO<sub>4</sub><sup>3-</sup> and its satellite peak.<sup>6, 7</sup> Compared with (P)CoO\_x-NF, those characteristic peaks of (P)CoO\_x-NF-HER become weaker, suggesting the P element leaches out during HER (Figure S16). Those results suggest that the Ce, Cr and P plays negligible role in HER.



Figure S17. Potential-time dependent curves of (a) (P)CoO<sub>x</sub>-NF-HER, (b) (CrP)CoO<sub>x</sub>-NF-HER and (c)  $(10CeCrP)CoO_x$ -NF-HER measured at 2~10 mA cm<sup>-2</sup>.



Figure S18. Raman spectra: (a) (P)CoO<sub>x</sub>-NF-HER and (b) (CrP)CoO<sub>x</sub>-NF-HER.



Figure S19. Plots of charge-current density for (10CeCrP)CoO<sub>x</sub>-NF-HER, (CrP)CoO<sub>x</sub>-NF-HER and (P)CoO<sub>x</sub>-NF-HER. HER.



**Figure S20.** Scheme of different interactions between protons and probe molecule (NH<sub>3</sub>) on (10CeCrP)CoO<sub>x</sub>-NF-HER, (CrP)CoO<sub>x</sub>-NF-HER and (P)CoO<sub>x</sub>-NF-HER.



**Figure S21.** Nyquist plots of (a)  $(10 \text{CeCrP})\text{CoO}_x$ -NF-HER, (b)  $(\text{CrP})\text{CoO}_x$ -NF-HER and (c)  $(P)\text{CoO}_x$ -NF-HER. Inset: the electronic circuit utilized to fit the curve.

| Catalyst                              | Potential/V<br>vs. RHE | R <sub>s</sub> /Ω | C <sub>T</sub> /(F S <sup>n</sup> ) <sup>-1</sup> | C <sub>p</sub> | $R_1/\Omega$ | $R_2/\Omega$ | C <sub>\u03c0</sub> /F |
|---------------------------------------|------------------------|-------------------|---------------------------------------------------|----------------|--------------|--------------|------------------------|
| (10CeCrP)CoO <sub>x</sub> -<br>NF-HER | -0.13                  | 1.342             | 0.0189                                            | 0.8874         | 1.683        | 38.07        | 0.00532                |
|                                       | -0.15                  | 1.341             | 0.0172                                            | 0.8847         | 1.158        | 22.15        | 0.00552                |
|                                       | -0.17                  | 1.343             | 0.0150                                            | 0.9015         | 1.08         | 11.55        | 0.00640                |
|                                       | -0.19                  | 1.341             | 0.0134                                            | 0.8971         | 0.6728       | 6.299        | 0.00678                |
|                                       | -0.21                  | 1.353             | 0.0108                                            | 0.9308         | 0.6298       | 3.223        | 0.00811                |
| (CrP)CoO <sub>x</sub> -NF-<br>HER     | -0.13                  | 1.409             | 0.0131                                            | 0.8440         | 2.028        | 69.92        | 0.00267                |
|                                       | -0.15                  | 1.409             | 0.0107                                            | 0.8582         | 1.345        | 27.91        | 0.00306                |
|                                       | -0.17                  | 1.404             | 0.0088                                            | 0.8659         | 0.9108       | 12.95        | 0.00339                |
|                                       | -0.19                  | 1.409             | 0.00680                                           | 0.8825         | 0.5765       | 6.22         | 0.00377                |
|                                       | -0.21                  | 1.404             | 0.00448                                           | 0.9096         | 0.4051       | 3.379        | 0.00442                |
| (P)CoO <sub>x</sub> -NF-HER           | -0.13                  | 2.032             | 0.00770                                           | 0.8368         | 54.68        | 122.6        | 0.000428               |
|                                       | -0.15                  | 2.038             | 0.00687                                           | 0.8542         | 36.39        | 44.69        | 0.00254                |
|                                       | -0.17                  | 2.035             | 0.00619                                           | 0.8663         | 16.26        | 16.38        | 0.00193                |
|                                       | -0.19                  | 2.003             | 0.00450                                           | 0.8513         | 1.009        | 13.2         | 0.00137                |
|                                       | -0.21                  | 1.991             | 0.00279                                           | 0.8754         | 0.5391       | 6.508        | 0.00189                |

**Table S5.** The fitted parameters of the EIS data of the (10CeCrP)CoO<sub>x</sub>-NF-HER, (CrP)CoO<sub>x</sub>-NF-HER and (P)CoO<sub>x</sub>-NF-HER.

Nyquist plots were simulated by a double-parallel equivalent circuit model. The first parallel components ( $C_T$  and  $R_1$ ) reflect the charge-transfer kinetics, in which  $C_T$  is related to the double layer capacitance and  $R_1$  represents catalytic charge-transfer resistance.<sup>8-10</sup>

## References

- 1. Y. Li, W. Qiu, F. Qin, H. Fang, V. G. Hadjiev, D. Litvinov and J. Bao, Identification of Cobalt Oxides with Raman Scattering and Fourier Transform Infrared Spectroscopy, *J. Phys. Chem. C*, 2016, **120**, 4511-4516.
- B. Rivas-Murias and V. Salgueiriño, Thermodynamic CoO-Co<sub>3</sub>O<sub>4</sub> crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals, *J. Raman Spectrosc.*, 2017, 48, 837-841.
- J. Wang, R. Gao, D. Zhou, Z. Chen, Z. Wu, G. Schumacher, Z. Hu and X. Liu, Boosting the Electrocatalytic Activity of Co<sub>3</sub>O<sub>4</sub> Nanosheets for a Li-O<sub>2</sub> Battery through Modulating Inner Oxygen Vacancy and Exterior Co<sup>3+</sup>/Co<sup>2+</sup> Ratio, ACS Catal., 2017, 7, 6533-6541.
- 4. Y. Li, R. Li, D. Wang, H. Xu, X. Lu, L. Xiao, F. Meng, J. Zhang, M. An and P. Yang, Pulse electrodeposited CoFeNiP as a highly active and stable electrocatalyst for alkaline water electrolysis, *Sustainable Energy & Fuels*, 2021, **5**, 3172-3181.
- Y. Ma, H. Wang, X. Lv, D. Xiong, H. Xie and Z. Zhang, Three-dimensional ordered mesoporous Co<sub>3</sub>O<sub>4</sub>/peroxymonosulfate triggered nanoconfined heterogeneous catalysis for rapid removal of ranitidine in aqueous solution, *Chem. Eng. J.*, 2022, 443, 136495.
- Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, One-pot synthesis of hierarchical Ni<sub>2</sub>P/MoS<sub>2</sub> hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction, *Appl. Surf. Sci.*, 2016, 383, 276-282.
- 7. Y. Wang, Y. Jiao, H. Yan, G. Yang, C. Tian, A. Wu, Y. Liu and H. Fu, Vanadium-Incorporated CoP2 with Lattice

Expansion for Highly Efficient Acidic Overall Water Splitting, Angew. Chem. Int. Ed., 2022, 61, e202116233.

- 8. R. Šimpraga, G. Tremiliosi-Filho, S. Y. Qian and B. E. Conway, In situ determination of the 'real are factor' in H<sub>2</sub> evolution electrocatalysis at porous Ni-Fe composite electrodes, *J. Electroanal. Chem.*, 1997, **424** 141-151.
- 9. N. V. Krstajić, B. N. Grgur, N. S Mladenović, M. V. Vojnović and M. M. Jakšić, The determination of kinetics parameters of the hydrogen evolution on Ti-Ni alloys by ac impedance, *Electrochim. Acta*, 1997, **42**, 323-330.
- A. Damian and S. Omanovic, Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix, *J. Power Sources*, 2006, **158**, 464-476.