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Figure S1. LSV curves of (10CeCrP)CoOy-NF, (CrP)CoO,-NF, (P)CoO-NF and NF.
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Figure S2. LSV curves of (10CeCrP)CoO-NF, (10CeCrP)CoO,-NF-HER, (CrP)CoO4-NF, (CrP)CoO,-NF-HER,

(P)CoO4-NF and (P)CoO4-NF-HER within 0 ~-0.3 V.
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Figure S3. CV curves: (a) (10CeCrP)CoO4-NF-HER, (b) (CrP)CoO4-NF-HER and (c) (P)CoOx-NF-HER with

different scan rates. (d) ECSAs of (10CeCrP)CoO-NF-HER, (CrP)CoO-NF-HER and (P)CoO-NF-HER.

Figure S4. Co;0, unit cell. Cell volume: 144.3 A3; total atoms: 14 (6Co + 80) (Blue: Co, red: O).
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Figure S5. LSV curves of (P)CoO,-NF-HER, (CeP)CoO4-NF-HER, (CrP)CoO4-NF-HER and (xCeCrP)CoOy-NF-

HER at different potential intervals: (a) 0 ~-0.3 V and (b) 0 ~-1.0 V.
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Figure S6. The theoretically calculated (red line) and experimentally measured (colored dots) hydrogen vs. time for

(P)CoO4-NF-HER, (CrP)CoO,-NF-HER and (10CeCrP)CoO-NF-HER at 20 mA cm™.



Table S1. Comparison of (10CeCrP)CoO,-NF-HER and other reported electrocatalysts with similar composition in 1

M KOH.
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Figure S7. SEM images: (a-b) (10CeCrP)CoO,-NF, (c-d) (CrP)CoO,-NF, and (e-f) (P)CoO,-NF.
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Figure S8. EDS spectrum of (P)CoO,-NF-HER.

Table S2. Elemental composition of (P)CoO4-NF-HER

Element Atomic %
O 11.56
P 2.11
Co 34.89
Ni 51.45
Total: 100.00
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Figure S9. EDS spectrum of (CrP)CoO,-NF-HER.

Table S3. Elemental composition of (CrP)CoO,-NF-HER

Atomic %

Element
0] 45.68
P 3.39
Cr 0.08
Co 28.00
Ni 22.84
Ce 0.00
Total: 100.00
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Figure S10. EDS spectrum of (10CeCrP)CoO,-NF-HER.

Table S4. Elemental composition of (10CeCrP)CoO4-NF-HER

Element Atomic/%
0] 36.15
P 0.59
Cr 0.12
Co 11.81
Ni S51.11
Ce 0.21
Total: 100.00
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Figure S11. (CrP)CoO-NF-HER: (a) TEM image, (b) STEM-HAADF, and (c-d) EDS elemental mappings of Co and

0. (P)CoO4-NF-HER: (e) TEM image, (f) STEM-HAADF, and (g-h) EDS elemental mappings of Co and O.
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Figure S12. Raman spectra of (P)CoOy-NF, (CrP)CoO4-NF and (10CeCrP)CoO,-NF before and after HER.

The Raman spectra (Figure S12) show that (CrP)CoO4-NF and (P)CoO4-NF-HER show negligible
characteristic peak of CoO, However, the peaks are obvious after the HER test.!: 2 Meanwhile, we can
also see that the intensities of CoOy characteristic peaks of (10CeCrP)CoO-NF-HER are stronger than

those of (10CeCrP)CoOy-NF. Therefore, the crystallinity of CoO, was enhanced during HER.
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Figure S13. XPS spectra of (a) (10CeCrP)CoO,-NF, (b) (CrP)CoO,-NF and (c) (P)CoO,-NF before and after HER.

The chemical states of Co in (P)CoOy-NF, (CrP)CoO-NF and (10CeCrP)CoO,-NF before and after
HER were studied by XPS. The Co 2p XPS spectra of (10CeCrP)CoO,-NF and (10CeCrP)CoO,-NF-HER
have eight main peaks, including Co 2ps;, and 2p;,; peaks for both Co’" and Co?" in Co;0,, as well as
their satellite peaks (Figure S13a). The Co 2p spectrum of (CrP)CoO4-NF-HER shows eight main peaks
too. But the Co 2p spectrum of (CrP)CoO4-NF shows ten main peaks, including Co 2p;,, and 2p,/, peaks
for metallic Co (Co?), and their satellite peaks (Figure S13b). For the Co 2p spectra of (P)CoO,-NF and
(P)CoO-NF-HER, eight main peaks for both Co*" and Co?" in Co30y, as well as their satellite peaks can
be seen (Figure S13¢).3 Comparing the Co 2p spectra of (P)CoO,-NF, (CrP)CoO,-NF and
(10CeCrP)CoO4-NF before and after HER, the peak intensities and areas of different Co characteristic

signals change, suggesting the chemical states of Co change during the HER process.
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Figure S14. XPS spectra of (10CeCrP)CoO4-NF and (10CeCrP)CoO-NF-HER. (a) Ce 3d; (b) Cr 2p and (c) P 2p.
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Figure S15. (a) Cr 2p and (b) P 2p XPS spectra of (CrP)CoO4-NF and (CrP)CoO,-NF-HER.
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Figure S16. P 2p XPS spectra of (P)CoO,-NF and (P)CoO,-NF-HER.

The chemical states of Cr, Ce and P in the electrocatalysts were studied by XPS. We can see that for
the XPS spectra of (10CeCrP)CoO,-NF and (10CeCrP)CoO4-NF-HER, no obvious Ce 3d, Cr 2p and P 2p
characteristic peaks can be observed (Figure S14). Meanwhile, the XPS spectra of (CrP)CoO,-NF and
(CrP)CoO4-NF-HER show no obvious characteristic peaks of Cr 2p and P 2p too (Figure S15). For the
XPS spectrum of (P)CoO,-NF, two characteristic peaks can be observed, represent PO,3- and its satellite
peak.> 7 Compared with (P)CoO,-NF, those characteristic peaks of (P)CoO,-NF-HER become weaker,

suggesting the P element leaches out during HER (Figure S16). Those results suggest that the Ce, Cr and

P plays negligible role in HER.
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Figure S17. Potential-time dependent curves of (a) (P)CoOx-NF-HER, (b) (CrP)CoO4-NF-HER and (c)

(10CeCrP)CoO-NF-HER measured at 2~10 mA c¢cm™.
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Figure S18. Raman spectra: (a) (P)CoO,-NF-HER and (b) (CrP)CoO4-NF-HER.
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Figure S19. Plots of charge-current density for (10CeCrP)CoO4-NF-HER, (CrP)CoO,-NF-HER and (P)CoOy-NF-

HER.
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Figure S20. Scheme of different interactions between protons and probe molecule (NH3) on (10CeCrP)CoOy-NF-

HER, (CrP)CoO,-NF-HER and (P)CoO,-NF-HER.
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Figure S21. Nyquist plots of (a) (10CeCrP)CoO4-NF-HER, (b) (CrP)CoO,-NF-HER and (c¢) (P)CoO,-NF-HER. Inset:

the electronic circuit utilized to fit the curve.
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Table S5. The fitted parameters of the EIS data of the (10CeCrP)CoO4-NF-HER, (CrP)CoO,-NF-HER and (P)CoO,-

NF-HER.
Catalyst PotentialV. pio  cp/(F svyt C, R/Q  RyQ C,/F
vs. RHE
20.13 1342 00189 08874 1683 3807  0.00532
20.15 1.341 00172 08847 1158 2215  0.00552
(10CeCrP)CoO,-
2017 1343 0.0150 09015  1.08 1155 0.00640
NF-HER
20.19 1.341 00134 08971  0.6728 6299  0.00678
2021 1353 0.0108 09308 06298 3223  0.00811
20.13 1.409 0.0131 0.8440 2028 6992 0.00267
20.15 1.409 0.0107 08582 1345 2791 0.00306
(CtP)CoO,-NF-
- 2017 1.404 0.0088  0.8659 09108 1295  0.00339
20.19 1.409 0.00680  0.8825  0.5765  6.22 0.00377
2021 1.404 0.00448 09096 04051 3379  0.00442
20.13 2.032 0.00770  0.8368 5468 1226  0.000428
20.15 2.038 0.00687  0.8542 3639 4469  0.00254
(P)CoO,-NF-HER 2017 2.035 0.00619  0.8663 1626 1638  0.00193

20.19 2.003 0.00450  0.8513  1.009 132 0.00137
021 1.991 0.00279  0.8754 05391  6.508  0.00189

Nyquist plots were simulated by a double-parallel equivalent circuit model. The first parallel components (Ct and R,)

reflect the charge-transfer kinetics, in which Cr is related to the double layer capacitance and R; represents catalytic

charge-transfer resistance.®10
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