Supplementary Information

Band-to-band transition visible-light-responsive anatase titania photocatalyst by N,F-codoping for water splitting and CO₂ reduction

Juhong Lian^{a#}, Kengo Shibata^{b#}, Yejun Xiao^{c#}, Shiwen Du^a, Toshiya Tanaka^b, Yu Qi^a, Osamu Ishitani,^b Kazuhiko Maeda^{b*}, Zhaochi, Feng^a, Fuxiang Zhang^{a,*}

^{*a*} State Key Laboratory of Catalysis, *i*ChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China.

^b Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

^c State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.

[#] the authors equally contribute to this work

Characterization

XRD measurements were carried out using a Rigaku D/Max-2500/PC powder diffractometer (Cu Ka radiation) with an operating voltage of 40 kV and current of 200 mA. The scan range and scan rate were 10-60° and 5 °/min, respectively. Ultravioletvisible absorption spectra over the range of 200-800 nm were recorded on a UV-vis spectrophotometer (V-670, JASCO). Surface morphologies of the samples were imaged by a field emission scanning electron microscopy (FESEM, S-5500, Hitachi). Energy dispersive spectrometer (EDS, max800) elemental analysis was used to study the distribution of constituent elements in the synthesized materials. The surface elemental binding energies were recorded on an X-ray photoelectron spectrometer (XPS, Thermo Esclab 250Xi, monochromatic Al Ka X-ray source). The C1s peak (284.6 eV) was referenced to normalize the measured binding energies for each sample. Transient absorption spectroscopy was conducted with a homemade spectrometer as the previous description¹. Specifically, an amplified Ti: sapphire laser system from Coherent (800 nm, 35 fs, 6 mJ/pulse, and 1 kHz repetition rate), nonlinear frequency mixing techniques and Femto-TA 100 spectrometer (Time-Tech Spectra) were used. For transient absorption spectroscopy, a pump pulse at 400 nm was used to excite the sample, and the induced absorption change (ΔA) as functions of wavelength was recorded.

First-principle calculations

All the calculations were performed using the Vienna Ab-initio Simulation Package (VASP)^{2, 3} with projector augmented wave (PAW) method⁴ based on the density functional theory. The generalized gradient approximation (GGA)⁵ of Perdew-Burke-Ernzerhof (PBE) form⁶ was applied to describe the exchange-correlation functional with an energy cutoff of 500 eV. The valence electron configuration including Ti ($3s^23p^63d^24s^2$), O ($2s^22p^4$), N ($2s^22p^3$), and F ($2s^22p^5$) were considered in the present work⁷. According to the Monkhorst-Pack scheme⁸, the gamma-centered k-point mesh of the Brillouin zone sampling for the primitive cells of bulk TiO₂ was set at 7 × 7 × 3. To investigate the effect of N,F-doping on the electronic structure of TiO₂,

the TiO₂ (101) surface structure model with four-layer periodic structure (containing 32 O atoms and 16 Ti atoms) was established, and then substituted by N atoms, F-connecting with Ti atoms of the surface based on the fully optimized anatase TiO₂ unit cell.. Thus the N,F-codoped TiO₂ (101) structure model has been established (containing 28 O atoms, 16 Ti atoms, 4 N atoms and 2 F atoms). The k-point mesh of the Brillouin zone was set at $3 \times 7 \times 1$ for the two models, and the vacuum layer is set to 15 Å. The geometries were fully optimized, and the convergence threshold was set to be 10⁻⁶ eV in energy and 0.01 eV Å⁻¹ in force. The PBE + *U* approach was employed to accurately describe the electronic structure with Ti 3d electron states with a *U-J* value of 4.5 eV according to the previous report⁹.

Supplementary data

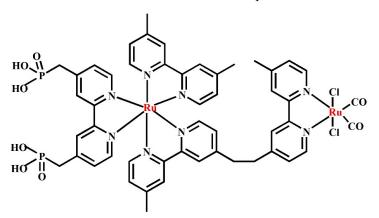


Chart 1 Structure and abbreviation of Ru complex used in this work.

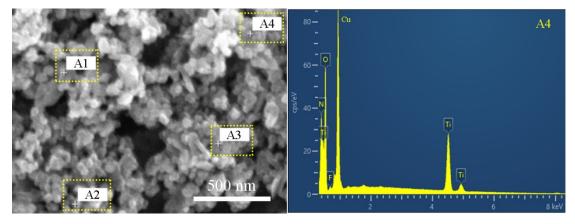
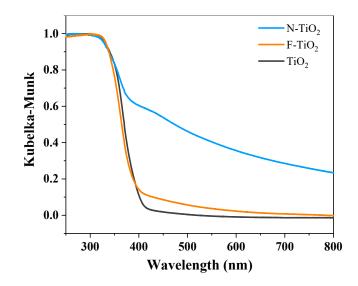
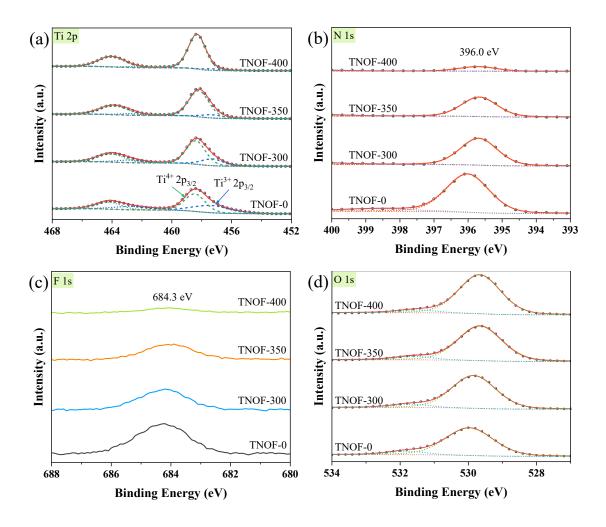
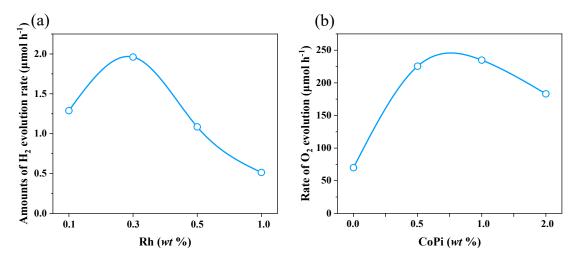


Fig. S1 SEM image of TNOF-0 sample and the selected regions for EDS analysis.

Area	Ti (wt%)	O (wt%)	N (wt%)	F (wt%)
A1	46.59	47.43	4.86	1.13
A2	49.20	44.77	5.09	0.94
A3	47.26	42.83	5.05	1.06
A4	51.9	42.83	4.39	0.89

Table S1 Ti, O, N, F elements content in different selected regions (Fig. S1) of TNOF-0 sample.

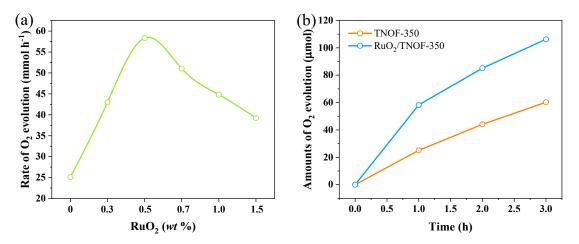

Fig. S2 UV-vis spectra of TiO_2 , N- TiO_2 , and F- TiO_2 samples.

Fig. S3 XPS spectra of (a) Ti 2p, (b) N 1s, (c) F 1s, and (d) O 1s for TNOF samples obtained at different temperatures.

Fig. S4 (a) Optimization of Rh cocatalyst with TNOF-400, (b) Optimization of CoPi cocatalyst with TNOF-350. H₂ evolution reaction conditions: 150 mg catalyst, 100 mL 10 *vol*% triethanolamine aqueous solution; O₂ evolution reaction conditions: 100 mg photocatalysts, 150 mg La₂O₃, 150 mL 10 mM AgNO₃ aqueous solution. Pyrex top irradiation type, 300 W xenon lamp ($\lambda > 420$ nm).

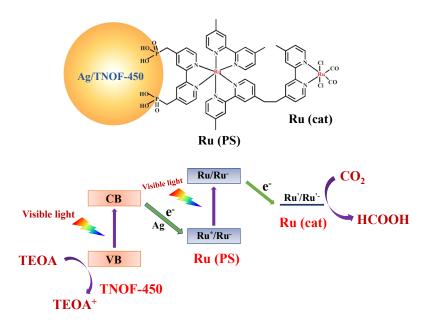


Fig. S5 (a) Optimization of RuO₂ cocatalyst with TNOF-350 and (b) time course curve of the photocatalytic O₂ evolution on TNOF-350 and 0.5 *wt*%-RuO₂/TNOF-350. Reaction conditions: 100 mg catalyst; 100 mL 5 mM Fe(NO₃)₃ aqueous solution; 300 W Xe lamp ($\lambda > 420$ nm).

Sample	Bandgap	Band-to-band transition	Light source	cocatalyst	Reaction solution	HER/OER activity (µmol/h)	ref
TNOF 2.16		yes	300 W Xe lamp (λ > 420 nm)	Rh	triethanolamine/H ₂ O (10 vol%)	2.9	— This work
	2.16				A NO (10 - NO	69.9	
				CoPi	AgNO ₃ (10 mM)	234.8	
$TiN_xO_yF_z$ 2.34	2.24	yes	300 W Xe lamp ($\lambda > 450 \text{ nm}$)	Pt	CH ₃ OH/H ₂ O (10 vol%)	0.1	J. Phys. Chem. C, 2007 , 111, 18264-18270
	2.34		300 W Xe lamp ($\lambda > 400 \text{ nm}$)		AgNO ₃ (10 mM)	43.0	
TiOFN 2.20		yes	300 W Xe lamp (λ > 420 nm)				Chem. Commun.,
	2.20				AgNO ₃ (10 mM)	50.0	2011 , 47, 11742- 11744
R-TiO ₂ :N,F		yes	300 W Xe lamp - (λ > 420 nm)				Sustain. Energy
	2.20				AgNO ₃ (10 mM)	11.5	Fuels, 2018 , 2, 2025-2035

Table S2 The photocatalytic activities of water reduction and/or oxidation over other reported N,X-codoped (X = F, B, or C) TiO₂ photocatalysts.

B,N-TiO ₂	1.97	yes	300 W Xe lamp (λ > 420 nm)	Pt	CH ₃ OH/H ₂ O (10 vol%)	0.69	<i>Chem. Eur. J.</i> , 2019 , 25, 1787- - 1794
				RuO ₂	AgNO ₃ (10 mM)	3.60 8.16	
TiO _{2-x} (CN) _y	2.48	yes	300 W Xe lamp $(\lambda > 420 \text{ nm})$				Adv. Funct.
				CoO _x	AgNO ₃ (20 mM)	4.25	Mater., 2019 , 29, 1901943

Fig. S6 The Z-scheme CO₂ reduction system consisting of Ag/TNOF-450 and **RuRu'** under visiblelight ($\lambda > 400$ nm).

Under visible-light irradiation, both the TNOF-450 and the photosensitizer in **RuRu'** were excited simultaneously. The excited electrons in the conduction band of TNOF-450 can transfer to the excited photosensitizer unit, producing one-electron-reduced species of photosensitizer, from which the intramolecular electron transfer to the catalytic unit in **RuRu'**, and followed by reduction of CO₂ into HCOOH. In this work, the photocatalytic CO₂ reduction was performed using the as-prepared **RuRu'**/Ag/TNOF-450 catalyst under visible-light, where Ag can transfer the electrons from TNOF-450 to the photosensitizer in **RuRu'**.

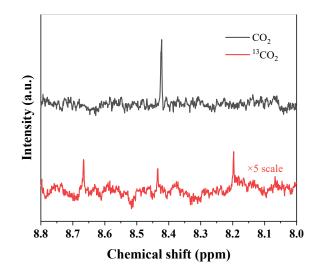


Fig. S7 ¹H NMR spectra of a reactant solution (2 mL of MeCN/TEOA mixed solution) containing 10 mg of **RuRu'**/Ag/TNOF-450, measured after filtration. The photocatalyst suspension was irradiated at 370–500 nm ($\lambda_{max} = 410$ and 460 nm) using a merry-go-round-type apparatus with an LED light for 15 h under ¹³CO₂ (650 Torr) or saturated unlabeled CO₂.

Sample	Reaction condition and time	Light source	Product	HCOOH production (µmol)	TON _(HCOOH)	Selectivity _(HCOOH)	ref
RuRu' /Ag/TNOF- 450	saturated CO ₂ , MeCN/TEOA (4:1, 4 mL), 15 h	400 W high pressure Hg lamp $(\lambda > 400 \text{ nm})$	НСООН, Н ₂	2.6 ± 0.2	2.2×10^{2}	97.2%	This work
N-TiO ₂	$\mathrm{CO}_{2}\left(\mathrm{g} ight),\mathrm{H}_{2}\mathrm{O}\left(\mathrm{g} ight)$	300 W Xe lamp (λ > 400 nm)	CH ₃ OH				<i>Chinese J.</i> <i>Catal.</i> , 2015 , 36, 2127-2134
Nb-TiO ₂	CO ₂ (g) flow	30 W white bulbs	СН4, СО	0.0	0.0		J. Colloid Interf. Sci., 2019 , 540, 1-8
N-TiO ₂	$CO_2(g) + H_2O$ (g) (30 : 1)	Xe lamp (315 < λ < 600 nm)	H ₂ , CH ₄ , CO, C ₂ H ₆ , C ₃ H ₈				<i>Catal. Sci.</i> <i>Technol.</i> , 2020 , 10, 1688-1698
N-TiO ₂	$CO_2(g) + H_2O$	13 W fluorescent	H ₂ , CH ₄ , C ₂ H ₄ ,				Appl. Catal. B-

Table S3 Comparison of the activities of TNOF-450 photocatalyst with other photocatalysts for CO₂ reduction.

	(g)	integrated bulbs,	C_2H_6				Environ., 2015,
		6h					168-169, 114-
							124
	saturated CO	20 W Xe lamp					J. Photochem.
N-TiO ₂ /CuO	saturated CO_2 , H_2O	$(350 < \lambda < 800)$	H ₂ , HCOOH	1.65		$\sim 94.5\%$	Photobiol., 2022,
		nm)					11, 100125
Ru' /mpg-C ₃ N ₄	saturated CO ₂ ,	450 W Xe lamp	H ₂ , CO, HCOOH	19.345	> 200	>80%	Chem. Commun.,
	MeCN/TEOA	$(\lambda > 400 \text{ nm})$					2013 , 49, 10127-
	(4:1, 4 mL), 5 h	$(\lambda > 400 \text{ mm})$					10129
RuRu' /Ag/g-C ₃ N ₄	saturated CO ₂	400 W high					J. Am. Chem.
	(g), DMA/TEOA	pressure Hg lamp	HCOOH, CO, H_2	~ 67	$> 3.3 \times 10^4$	87-99%	Soc., 2016 , 138,
	(4:1, 4 mL), 40 h	$(\lambda > 400 \text{ nm})$					5159-5170
RuRu' /Pb ₂ Ti ₂ O _{5.4} F _{1.}	saturated CO ₂ ,	400 W high					J. Am. Chem.
	MeCN/TEOA	pressure Hg lamp	HCOOH, H ₂	0.6	26	> 99%	Soc., 2018, 140,
2	(4:1, 4 mL), 15 h	$(\lambda > 400 \text{ nm})$					6648-6655

References

- 1. Q. Sun, Z. Yin, S. Wang, C. Zhao, J. Leng, W. Tian and S. Jin, *J Phys Chem Lett*, 2020, **11**, 9045-9050.
- 2. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169-11186.
- 3. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 4. P. E. Blöchl, *Physical Review B*, 1994, **50**, 17953-17979.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Physical Review B*, 1992, 46, 6671-6687.
- 6. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 7. A. Miyoshi, A. Kuwabara and K. Maeda, *Inorganic Chemistry*, 2021, **60**, 2381-2389.
- 8. H. J. Monkhorst and J. D. Pack, *Physical Review B*, 1976, **13**, 5188-5192.
- 9. M. Nolan, A. Iwaszuk, A. K. Lucid, J. J. Carey and M. Fronzi, *Advanced Materials*, 2016, **28**, 5425-5446.