Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Synthesis of Platinum Nanoparticles on Strontium Titanate Nanocuboids via Surface Organometallic Grafting for the Catalytic Hydrogenolysis of Plastic Waste

Katherine E. McCullough,^a Ian L. Peczak,^b Robert M. Kennedy,^{a,b} Yi-Yu Wang,^c James Lin,^d Xun Wu,^{c,d}

Alexander L. Paterson,^{d,†} Frédéric A. Perras,^d Jacklyn Hall,^a A. Jeremy Kropf,^a Ryan A. Hackler,^a

Youngho Shin,^e Jens Niklas,^a Oleg G. Poluektov,^a Jianguo Wen,^{f,*} Wenyu Huang,^{c,d,*} Aaron D.

Sadow, c.d,* Kenneth R. Poeppelmeier, b,* Massimiliano Delferro, a,g,* Magali S. Ferrandona,*

^aChemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

^bDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

^cDepartment of Chemistry, Iowa State University, Ames, Iowa 50011, United States

^dU.S. DOE Ames National Laboratory, Ames, Iowa 50011, United States

eApplied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

^fCenter for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States

^gPritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637,

United States

[†]Present address: National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

Table of Contents

1.	Scheme of SOMC-Derived Pt/STO Synthesis	S2
2.	<i>i</i> PP Derived Liquid Sample Analysis	S3
3.	Gas Species Quantification and H_2 Consumption Analysis	S3
4.	Diffraction Patterns of STO after Various Treatments	S4
5.	TGA of As-Prepared STO Supports	S4
6.	TEM of STO As-Prepared and after Calcination	
7.	Average Size of STO Nanocuboids & Percent Nanocuboids	
8.	BET Surface Area of Calcinated STO Supports	S5
9.	NMR Titration of Surface Hydroxyls on STO	S6
10.	TGA of STO After Surface Pretreatments	S6
11.	EPR Spectra of STO and Various Grafted Pt/STO Samples	S7
12.	STEM HAADF micrographs of SOMC 1cPt/STO	S7
13.	TGA of 2-cycle Pt/STO.	S8
14.	High-Resolution TEM of Pt/STO samples	
15.	Characterization of Hydrogenolysis Gas Products, 2cPt red /STO	S9
16.	Characterization of Hydrogenolysis Gas Products, 2cPt cal+red/STO	S10
17.	Images of Initial Polymer & Upcycled Products	S11

18. Upcycling Data for Comparable Supported Pt Catalysts	S11
19. XANES for 2cPt red and 2cPt cal+red.	S12
20. Linear Combination Fitting Results for XANES	S12
21. XANES Region for 2cPt red/STO & 2cPt cal+red/STO before and after	
reaction	S13
22. X(k), k ¹ -weighted spectra for 2cPt_red/STO & 2cPt_cal+red/STO before and after	
reaction.	S13
23. EXAFS Fitting Results for Pt/STO Samples after H ₂ Reduction	S14
24. EXAFS fitting results for Pt/STO samples as received under He flow	S14
25. Pt L3 edge EXAFS fit results for fresh 2cPt/STO samples	S15
26. Catalytic Performance of 2cPt red/STO with post-synthesis H ₂ reduction	S16
27. Catalytic performance of 2cPt cal+red/STO with post-synthesis H ₂ reduction and	
calcination	S16

Fig. S1 Stepwise SOMC Synthesis of Pt/STO Catalysts. Pt (green) is deposited onto a STO nanocuboid (surface termination shown) in toluene under heating via platinum(II)acetylacetonate (Pt(acac)₂). Pt(acac)₂ bonds to hydroxyl groups on the STO surface, at which point the sample is placed in a reducing environment ("H₂") to afford a sample with 1 - 2 nm Pt nanoparticles on the STO nanocuboid support (right).

Fig. S2 *iPP*-Derived Liquid Sample Analysis. The calibration curve used to benchmark polymer upcycling products in liquid sample analysis is presented on the left of this figure, and a sample high-pressure liquid chromatography output is presented on the right. A more extensive description of this analytical technique is presented in the Experimental section of the main manuscript under the same title.

Fig. S3 Gas Species Quantification and H_2 Consumption Analysis. The calibration curve used to quantify gaseous species and hydrogen consumption in this work is presented above. A more extensive description of this analytical technique is presented in The Experimental section of the main manuscript under the same title.

Fig. S4 Diffraction patterns of SrTiO₃ after Various Treatments. Patterns were collected by power x-ray diffraction, and all correspond to crystalline strontium titanate.

Fig. S5 Thermogravimetric analysis (TGA) of as-prepared STO supports. The data show 0.5 % by mass of carbonate desorption above 800 °C, which would indicate a minority surface species (e.g. SrCO₃) present after synthesis that does not significantly affect the STO surface. This is consistent with previous observations about SrCO₃ formation in Peczak et al.^{13a}

Fig. S6 TEM images of as-prepared STO (a) and STO after calcination at 350 °C (b), 450 °C (c), and 550 °C (d). All samples, regardless of calcination conditions or lack thereof, appear to have average sizes of around 45.0 ± 10.0 nm and contain between 70 - 75 % nanocuboid particles per sample. Measurements of these two parameters corresponding to each sample are presented in the supplementary information.

Table S1. Average size of STO nanocuboids and average amount of nanocuboid	l particles per
sample analyzed for an as-synthesized support sample, and samples that had been ca	alcined at 350
°C, 450 °C, and 550 °C.	

Calcination Temperature (°C)	Average STO Particle Size (nm)	% Cubes
As-prepared (no calcination)	45.9 ± 9.7	74.2
350	45.7 ± 11.1	71.4
450	42.1 ± 9.9	72.1
550	42.6 ± 9.1	73.5

Table S2. BET Surface Area of STO supports After Calcination at Various Temperatures. Catalyst surface area was determined by N_2 adsorption. Prior to surface area measurements, each sample was degassed by heating under vacuum at 150°C. Five data points were collected to ensure accuracy.

Calcination Temperature (°C)	BET Surface Area (m ² / g)
As-prepared (no calcination)	26.5
350	22.9
450	17.0
550	16.7

Fig. S7 NMR titration of surface hydroxyls per nm² on STO with $Bn_2Mg(THF)_2$ in C_6D_6 and cyclohexane. The STO was calcined at 550 °C followed by steam for 2 h ranging from 100 °C to 500 °C (green dots). The STO was calcined at 550 °C followed O₃ treatment at 200 °C for 2 h and by steam for 2 h ranging from 100 °C to 400 °C (red square).

Fig. S8 TGA curve (a) and H₂O signals (b) of STO at various treatments.

Fig. S9 Continuous wave (CW) X-band EPR Spectra of Calcined STO, $Pt(acac)_2$ on STO after grafting, $Pt(acac)_2$ on STO after reduction, and as prepared STO (black, red, green, and blue respectively) at cryogenic temperatures (T = 15 K). The intense broad EPR signal centered around 220 mT is due to ferromagnetically coupled electron spins, which we assign to Ti(III) ions in the STO support.

Fig. S10 STEM HAADF micrographs of SOMC 1cPt/STO calcined at 550 °C, followed by O_3 and steam treatment at 200 °C, made at 90 °C (1.5 ± 0.4 nm).

Fig. S11 TGA of 2cPt/STO with the second deposition of (Pt(acac)₂ is only dried.

Fig. S12 (a) Aberration corrected HAADF of platinum nanoparticles grafted onto STO with two different exposed orientations. Fourier transform of the (b) leftmost platinum nanoparticle and (c) STO indicating the orientation of the nanoparticle on STO

$0.140 \alpha (4.0\%)$	
0.149 g (4.970)	4.1 mmol (12.2%)
0.128 g (4.2%)	5.6 mmol (16.9%)
0.255 g (8.5%)	5.9 mmol (17.9%)
0.185 g (6.2%)	5.6 mmol (16.9%)
0.129 g (4.2%)	5.9 mmol (17.8%)
	0.149 g (4.9%) 0.128 g (4.2%) 0.255 g (8.5%) 0.185 g (6.2%) 0.129 g (4.2%)

Gas Product Characterization

Gas (%)	H ₂ Consumption (%)
0.374 g (12.3%)	8.0 mmol (23.9%)
0.248 g (8.2%)	6.2 mmol (18.6%)
0.212 g (7.0%)	5.2 mmol (15.6%)
0.224 g (7.4%)	7.3 mmol (22.0%)
0.207 g (6.9%)	6.8 mmol (20.3%)
	Gas (%) 0.374 g (12.3%) 0.248 g (8.2%) 0.212 g (7.0%) 0.224 g (7.4%) 0.207 g (6.9%)

Fig. S14 Characterization of Gas Products Formed Via *i*PP Hydrogenolysis of 2cPt_cal+red/STO.

Fig. S15 Images of the initial polymer and after the 5 successive hydrogenolyses using 2cPt_cal+red /STO.

Table S3. Upcycling Data for Supported Pt Upcycling Catalysts Comparable to SOMC-derived Catalysts Reported in This Work.

Sample	Starting Sample	M _{n,i} (Da)	Time (h)	M _{n,f} (Da)	Ð	Yield (%)
ALD Pt/STO ^a	iPP	6000	24	250	1.4	83
1c-ALD Pt/STO ^b	HDPE	8150	24	1250	4.7	91
Pt/Al ₂ O ₃ ^b	HDPE	8150	18	1850	5.8	-

a R.A. Hackler, J.V. Lamb, I.L. Peczak, R.M. Kennedy, A.M. LaPointe, K.R. Poeppelmeier, A.D. Sadow, M. Delferro. *Macromolecules*, 2022, **55**, 15, 6801-6810.

b G. Celik, R.M. Kennedy, R.A. Hackler, M. Ferrandon, A. Tennakoon, S. Patnaik, A.M. LaPointe, S.C. Ammal, A. Heyden, F.A. Perras, M. Pruski, S.L. Scott, K.R. Poeppelmeier, A.D. Sadow, M. Delferro. *ACS Cent. Sci.*, 2019, **5**, 1795-1803.

Fig. S16 XANES region for 2cPt_red/STO and 2cPt_cal+red/STO before and after reaction. All materials were measured without treatment at room temperature under inert flow.

Table S4. Linear combination fitting results for the as-received Pt/STO samples using PtO_2 and Pt as references. Fit in XANES from 11553 to 11603 eV.

Sample	Condition	PtO ₂	Pt
2cPt_red/STO	Fresh	0.212 ± 0.009	0.788 ± 0.009
2cPt_cal+red/STO	Fresh	0.299 ± 0.009	0.701 ± 0.009

Fig. S17 XANES region for $2cPt_red/STO$ and $2cPt_cal+red/STO$ before and after reaction. All materials were reduced in-situ at 250 °C, 3.5% H₂ prior to measurement at room temperature under inert flow.

Fig. S18 X(k), k^1 -weighted, spectra for 2cPt_red/STO and 2cPt_cal+red/STO before and after reaction measured at room temperature under He flow (a) before and (b) after in-situ reduction at 250 °C in 3.5% H₂.

Fig. S19 EXAFS fitting results for (a) fresh 2cPt_red/STO, (b) spent 2cPt_red/STO, (c) fresh 2cPt_cal+red/STO, and (d) spent 2cPt_cal+red/STO for samples measured after reduction at 250 °C in 3.5% H₂. Results and fitting parameters are summarized in Table 2 of the main text.

Fig. S20 EXAFS fitting results for (a) fresh 2cPt_red/STO and (b) fresh 2cPt_cal+red/STO for samples measured as received under He flow at room temperature. Results and fitting parameters are summarized in Table S5.

Table S5. Pt L3 edge EXAFS fit results for fresh 2cPt/STO samples measured as received under He flow at room temperature ($k = 3.0 - 15 \text{ Å}^{-1}$, $\Delta k = 0.5$, $k^{N} N = 1,2,3$, R = 1.2 - 3.1 Å). S_0^2 set to the value (0.84) fit for the Pt reference foil. The coordination number for the Pt-O scattering path was estimated from the XANES linear combination fitting results (Table S4).

Sample	Path	Ν	R (Å)	$\sigma^2 (x 10^{-3} \text{\AA}^2)$	$\Delta E_0 (eV)$	R-factor
2cPt_red/STO	Pt-O	1.3	2.021 ± 0.023	5.3 ± 1.6	14.9 ± 2.4	0.025
	Pt-Pt	5.5 ± 0.7	2.725 ± 0.006	7.0 ± 0.7	6.3 ± 1.0	
2cPt cal+red/	Pt-O	1.8	2.023 ± 0.012	5.0 ± 0.8	15.4 ± 1.3	0.010
STO	Pt-Pt	4.4 ± 0.6	2.718 ± 0.007	7.5 ± 0.8	6.8 ± 1.0	

Run	Gas (amt, %)	Liquid (amt, %)	M _n (Da)	$M_{\rm w}$ (Da)	Ð
1st	0.149 g (4.9 %)	OL: 2.78 g (92.1 %) IL: 0.09 g (3.0%)	280	315	1.1
RE_1	0.128 g (4.2 %)	OL: 2.87 g (95.1 %) IL: 0.01 g (0.4%)	270	310	1.1
RE_2	0.255 g (8.5 %)	OL: 1.98 g (66.2 %) IL: 1.01 g (33.5 %)	270	305	1.1
RE_3	0.185 g (6.2 %)	OL: 2.70 g (89.7 %) IL: 0.12 g (4.0 %)	275	310	1.1
RE_4	0.129 g (4.2 %)	OL: 2.15 g (70.7 %) IL: 0.76 g (25.0 %)	270	305	1.1

Table S6. Catalytic performance of 2cPt_red/STO with post-synthesis H₂ reduction at 300 °C, 4 h for hydrogenolysis using *i*PP (M_n = 5K Da, M_w = 12K Da, 3 g), 301.0 mg catalyst, 300 °C, 180 psi mixed gas (9:1 ratio of H₂:He) for 24 h. No solid products were observed. Total liquid = OL + IL.

Table S7. Catalytic performance of 2cPt_cal+red/STO with post-synthesis H₂ reduction and calcination, both at 300 °C, 4 h. Results from hydrogenolysis using *i*PP ($M_n = 5$ K Da, $M_w = 12$ K, 3 g), 301.0 mg catalyst, 300 °C, 180 psi mixed gas (9:1 ratio of H₂:He) for 24 h. No solid products were observed. Total liquid = OL + IL.

Run	Gas (amt, %)	Liquid (amt, %)	M _n (Da)	M _w (Da)	Đ
1st	0.374 g (12.3%)	OL: 2.47 g (81.6 %) IL: 0.19 g (6.1%)	180	190	1.1
RE_1	0.248 g (8.2 %)	OL: 2.61 g (86.5 %) IL: 0.16 g (05.3 %)	195	215	1.1
RE_2	0.212 g (7.0%)	OL: 2.73 g (90.2 %) IL: 0.09 g (2.8 %)	200	220	1.1
RE_3	0.224 g (7.4%)	OL: 2.61g (86.3 %) IL: 0.19 g (6.2 %)	210	230	1.1
RE_4	0.207 g (6.9%)	OL: 2.51 g (83.3 %) IL: 0.29 g (9.8 %)	220	245	1.1