Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Room-temperature electrochemical deposited polycrystalline SnO₂

with adjustable work function for high-efficiency perovskite solar cells

Yapeng Sun, Jiankai Zhang, Huangzhong Yu*

School of Physics and Optoelectronics, South China University of Technology, 510640

Guangzhou, China

*To whom correspondence should be addressed. E-mail: hzhyu@scut.edu.cn.

This PDF file includes:

Figs. S1 to S11 Tables S1 to S7

Fig. S1. (a-c) Equivalence principle schematic diagram of the deposition process.

Fig. S2. (a-d) The SEM images of perovskite films on different SnO₂ films.

Fig. S3. (a) The XRD patterns and (b) the absorption spectrums of perovskite films on different SnO_2 films.

Fig. S4. The conductivity test of SnO_2 films using the *J*-*V* curves.

Fig. S5. (a) The PL curves and (b) the TRPL curves of perovskite films on different SnO₂ films.

Fig. S6. The cross-sectional SEM image of device.

Fig. S7. (a) The reverse scanning *J-V* curves and (d) the PCE for MAPbI₃ devices based on different SnO₂ films. (b) The reverse scanning *J-V* curves and (e) the PCE for two-step method (FAPb $I_3)_{0.93}$ (MAPbI₃)_{0.07} perovskite devices based on different SnO₂ films. (c) The reverse scanning *J-V* curves and (f) the PCE for FAPbI₃ perovskite without excess PbI₂ devices based on different SnO₂ films.

Fig. S8. The comparison figure of the device performance before and after adding excessive PbI_2 for different SnO_2 films.

Fig. S9. (a-d) The photovoltaic parameters statistics chart for devices based on different SnO₂ films.

Fig. S10. Maximum power point tracking for device with different SnO_2 preparation methods measured under 1 Sun illumination without ultraviolet filter.

Fig. S11. (a) Mott–Schottky fitting to the C^{-2} -*V* curves of different devices. (b) Nyquist plots of different devices measured in the dark.

Preparation method	PCE (%)	J _{SC} (mA cm ⁻²)	V _{OC} (mV)	FF (%)	Temperat -ure (°C)	Year	Ref.
Electrochemical Deposited	22.85	24.83	1144	80.44	25	-	This work
Commercially Colloidal Dispersion	21.72	23.92	1124	80.09	150	-	This work
Cd-SnO2 nanocrystals	21.73	23.81	1090	84.00	90	2022	1
Mesoporous SnO ₂ and RbF modification	22.72	24.50	1148	82.10	180	2021	2
Vacuum-assisted annealed SnO ₂ Colloidal Dispersion	20.14	22.76	1140	77.62	100	2022	3
MXene-SnO ₂ Colloidal Dispersion	19.14	24.16	1070	74.05	150	2020	4
Non-Aqueous One-Pot SnO ₂ Nanoparticle Inks	18.40	21.88	1120	75.00	140	2022	5
Heterophase SnO ₂ Electron Transport Bilayer	20.39	23.26	1125	77.92	190	2020	6
HEPES-Au NSs-modified SnO ₂ Colloidal Dispersion	21.13	23.12	1150	79.04	150	2022	7
Zr/F Co-Doped SnO ₂	19.19	24.39	1105	71.20	200	2020	8
Compact SnO ₂ layer @ SnO ₂ nanosheets	16.17	22.76	1050	68.00	95	2016	9
Energetically favored formation of SnO ₂	19.20	22.20	1170	74.00	80	2017	10
Atomically Coherent Interlayers on	25.50	25.74	1189	83.20	190	2021	11
Chemical Bath Deposition	25.20	25.14	1181	84.80	170	2021	12
Conformal Quantum dot- SnO ₂	25.39	26.28	1177	81.49	100	2022	13

 Table S1. Comparison the performance of the state-of-the-art PSCs of the low temperature

 prepared SnO2 reported in the literature (PCEs denote champion values).

	SnO ₂ (PH=3)	SnO ₂ (PH=2)	SnO ₂ (PH=1)	SnO ₂ (CD)
KPFM (eV)	4.32	4.46	4.55	4.68

Table S2. The average surface potentials of different SnO_2 films.

	SnO ₂ (PH=3)	SnO ₂ (PH=2)	SnO ₂ (PH=1)	SnO ₂ (CD)
E _{cutoff} (eV)	16.99	16.86	16.72	16.59
$W_{\rm F}({ m eV})$	4.23	4.36	4.50	4.63
Eonset (eV)	3.53	3.50	3.46	3.40
E _{VB} (eV)	-7.76	-7.86	-7.96	-8.03
$E_{\rm CB}({\rm eV})$	-4.13	-4.20	-4.29	-4.35

Table S3. Energy band parameters of different SnO_2 films.

_						_
	Sample	A ₁ (%)	$\tau_1(ns)$	A ₂ (%)	$ au_2$ (ns)	τ (ns)
	SnO ₂ (PH=3)	91.23	25.87	8.77	196.78	98.06
	SnO ₂ (PH=2)	93.06	27.64	6.93	231.23	105.79
	SnO ₂ (PH=1)	89.75	26.57	10.25	212.45	115.29
	SnO ₂ (CD)	88.83	37.17	11.17	251.57	135.73

Table S4. Results of the double exponential fitting of TRPL spectra.

Material	$J_{\rm SC}$ (mA cm ⁻²)	V _{OC} (mV)	FF (%)	PCE (%)
SnO ₂ (PH=3)	22.79	1077	65.55	16.09
SnO ₂ (PH=2)	22.93	1100	72.31	18.24
SnO ₂ (PH=1)	22.75	1109	75.66	19.09
SnO ₂ (CD)	22.16	1094	76.68	18.59

 $\label{eq:solution} \textbf{Table S5.} Photovoltaic performances of MAPbI_3 devices based on different SnO_2 films.$

		-		
Material	J _{SC} (mA cm ⁻²)	V _{OC} (mV)	FF (%)	PCE (%)
SnO ₂ (PH=3)	24.66	1101	70.86	19.24
SnO ₂ (PH=2)	24.91	1134	73.74	20.83
SnO ₂ (PH=1)	24.73	1145	80.10	22.68
$SnO_2(CD)$	24.17	1124	79.40	21.57

Table S6. Photovoltaic performances of two step method (FAPb $I_3)_{0.93}$ (MAPb $I_3)_{0.07}$ perovskitedevices based on different SnO2 films.

Material	J _{SC} (mA cm ⁻²)	$V_{\rm OC}({\rm mV})$	FF (%)	PCE (%)			
SnO ₂ (PH=3)	24.84	1074	58.51	15.61			
SnO ₂ (PH=2)	24.78	1108	64.79	17.79			
SnO ₂ (PH=1)	24.53	1128	75.53	20.90			
$SnO_2(CD)$	24.02	1119	80.03	21.51			

Table S7. Photovoltaic performances of FAPbI₃ perovskite without excess PbI₂ devices based on different SnO₂ films.

References

- J. X. Zhong, W. Q. Wu, Y. Zhou, Q. Dong, P. Wang, H. Ma, Z. Wang, C. Y. Yao, X. Chen, G. L. Liu, Y. Shi, D. B. Kuang, *Adv. Funct. Mater.*, 2022, **32**, 2200817.
- 2 Q. Chen, C. Peng, L. Du, T. Hou, W. Yu, D. Chen, H. Shu, D. Huang, X. Zhou, J. Zhang, W. Zhang, H. Li, J. Xie, Y. Huang, *J. Energy Chem.*, 2022, 66, 250-259.
- 3 X. Li, Z. Shi, F. Behrouznejad, M. Hatamvand, X. Zhang, Y. Wang, F. Liu, H. Wang, K. Liu, H. Dong, F. Mudasar, J. Wang, A. Yu, Y. Zhan, *J. Energy Chem.*, 2022, 67, 1-7.
- 4 L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang, C. Xu, W. Zeng, Y. Xiong, H. Sang, D. Liang, Nano-Micro Lett., 2020, 12, 44.
- 5 T. a. N. Peiris, H. C. Weerasinghe, M. Sharma, J.-E. Kim, M. Michalska, N. Chandrasekaran, D. C. Senevirathna, H. Li, A. S. R. Chesman, D. Vak, J. J. Jasieniak, *Chem. Mater.*, 2022, 34, 5535-5545.
- 6 H. B. Lee, N. Kumar, M. M. Ovhal, Y. J. Kim, Y. M. Song, J.-W. Kang, *Adv. Funct. Mater.*, 2020, 30, 2001559.
- 7 L. Fan, P. Wang, M. Wang, W. Lü, F. Wang, H. Liu, J. Yang, L. Yang, Chem. Eng. J., 2022, 427, 131832.
- 8 J. Tian, J. Zhang, X. Li, B. Cheng, J. Yu, W. Ho, Sol. RRL, 2020, 4, 2000090.
- 9 Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen, P.-L. Qin, L.-B. Xiong, H.-W. Lei, J.-W. Wan, J. Wen, G. Yang, J.-J. Ma, Z.-Y. Zhang, G.-J. Fang, *Adv. Funct. Mater.*, 2016, 26, 6069-6075.
- 10 Q. Dong, Y. Shi, C. Zhang, Y. Wu, L. Wang, Nano Energy, 2017, 40, 336-344.
- 11 H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, *Nature*, 2021, **598**, 444-450.
- 12 J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, *Nature*, 2021, **590**, 587-593.
- 13 M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H. B. Kim, S. I. Mo, Y. K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Gratzel, D. S. Kim, *Science*, 2022, **375**, 302-306.