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Supplementary Text
Medium-entropy ceramic design

Enhanced sampling method for phase transition simulations: Due to the high energy barrier 

between relevant material phases, it remains challenging to accurately reveal crystallization 

process with classical MD simulations on practical time scales1. To this challenge, a number 

of enhanced sampling methods have been developed to efficiently accelerate crystallization 

process in MD simulations2–4. As one of the representative enhanced sampling methods, 

metadynamics method generate a bias potential as function of CVs on the fly and help 

simulated system overcome energy barriers. To perform phase transition simulations for the 

medium-entropy ceramics and three kinds of traditional low-entropy ceramics, we took use of 

well-tempered metadynamics (WTMetaD)5 enhanced sampling method with molecular 

dynamics (MD) simulations. WTMetaD could help the system overcome energy barriers by 

introducing a history dependent bias potential , 𝑉(𝑠,𝑡)

                                         (S1)
𝑉(𝑠,𝑡) = Δ𝑇ln (1 + 𝜔𝑁(𝑠,𝑡)Δ𝑇 )

where  is a temperature which is calculated from a preselected bias factor , Δ𝑇 𝛾= (𝑇+ Δ𝑇)/𝑇

 is the height of bias potential,  is the simulation time,  is a set of collective variables 𝜔 𝑡 𝑠

(CVs), and  is the histogram of CVs. The bias factor  was introduced to prevent the 𝑁(𝑠,𝑡) 𝛾

system falling into regions with much higher free energy which were not physically relevant. 

With WTMetaD simulation, free energy surface of four ceramic systems was estimated with 

histogram of CVs as follows,

                                 (S2)
𝐹̃(𝑠,𝑡) =‒ (𝑇+ Δ𝑇)ln (1 + 𝜔𝑁(𝑠,𝑡)Δ𝑇 )

for the study in current work, we simplified the issue by ignoring the crystallization of pure 

TiO2 while focus on the phase transition of ZrO2, which showed to be the main constituent of 

crystalline part in the medium-entropy ceramics. To address the performance of medium-

entropy ceramics, we conducted crystallization simulation for three kinds of traditional low-

entropy ceramics as contrast. Specifically, we conducted phase transition simulations of ZrO2 

and yttrium stabilized ZrO2 ((Zr0.83Y0.17)O2.17) by choosing the average cubic harmonic order 

parameter6,7 of zirconium ions as CV, which can characterize well crystallinity of 

monocrystalline ZrO2. For the system with silicon and titanium, the titanium (silicon) ions 

may form amorphous titanium oxide (silica) outside crystalline zirconia, or rather crystallize 

together with zirconium ions and resulting in crystalline zirconia with lattice distortion. In 

order to distinguish crystalline and amorphous structures, and further separate pure crystalline 



3

zirconia and titanium doping crystalline zirconia with lattice distortion, for the phase 

transition simulation of (Zr0.77Y0.15Si0.08)O2.24 and (Ti0.42Zr0.42Y0.08Si0.08)O2.08, we chose two 

different CVs, the number of bridging oxygen (BO) as , and the dot product of local 𝑠1

Steinhardt’s order parameter8–10  of zirconium as . The number of BO can characterize 𝑞𝑑𝑜𝑡4 𝑠2

the enrichment degree of titanium (silicon) ions. For the system with silicon and titanium, the 

more BO indicated that there are more titanium-silicon-rich regions, while the lower BO 

indicated the zirconium and titanium (silicon) ions were mixed more uniformly. As reported 

in previous study, the parameter  can tell whether the ordered zirconium atoms were 𝑞𝑑𝑜𝑡𝑙

clustered together or not. By using these two CVs together, the three states that we 

concerned, namely, pure crystalline zirconia, titanium doping crystalline zirconia with lattice 

distortion, and amorphous state can be separated well with each other.

Training of machine learning potential: For multicomponent oxide ceramics, the lack of 

efficient and accurate classical interatomic potentials blocks MD study for inherent 

mechanism of crystallization and precise estimation of thermodynamics and mechanical 

properties. The advances in machine learning (ML) and artificial intelligence provide a new 

paradigm in MD simulations with ab initio accuracy11. The ML models are optimized to fit 

interatomic potentials from accurate data sets obtained by density functional theory (DFT) 

calculations. The well-trained ML potential can characterize well atomic interactions and 

result in precise representation of the potential energies and forces at a much lower cost 

compared to DFT calculations. To train efficient ML potential with ab initio accuracy 

representation of atomic interactions for the whole phase transition process, it is crucial to 

obtain all the characteristic configurations, namely crystalline structures, amorphous 

structures, and the structures with two phases coexist. Active learning procedure has been 

successively applied to the configuration collection and construction of ML potential for 

monoatomic systems12,13. The active learning training procedure consists of four parts, i.e. the 

enhanced sampling simulation, selection of candidate configurations, samples labeling, and 

ML potential training. However, we found that the original active learning procedure is not 

adaptive with multicomponent medium entropy ceramics system. To reduce the 

computational cost for sample labeling with DFT calculations, the atom number used in DFT 

calculations was limited to ~100. Apparently, for medium-entropy ceramic system, a 

candidate configuration of ~100 atoms with equal proportion of cations contains only ~10 

atoms of each cation, which was not efficient for configurations collection of various atomic 

arrangement for each element. This would significantly increase the amount of data to 
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completely cover all the characteristic configurations and lead to too much computational 

cost with DFT calculations. 

To better adjust multicomponent oxide ceramics and train an accurate ML potential more 

efficiently, we modified the procedure of active learning for ML potential training, which we 

would refer to as stepwise training. The work flow for the stepwise training procedure for 

medium-entropy ceramic system was shown in Figure S1. First, an initial ML potential was 

trained with configurations obtained from enhanced sampling simulation with medium-

entropy ceramic system of (Ti0.42Zr0.42Y0.08Si0.08)O2.08 by using an inaccurate classical 

potential. The parameters of classical BKS potential in this step were combined by the 

parameters for Ti/O14, Y/O15, and Zr/Si/O16, which was not compatible with each other. It 

should be mentioned that the empirical potential used for the generation of initial ML 

potential does not need to be particularly accurate, since all the required energy and forces of 

the training sets is then estimated with DFT calculations. Second, to characterize short-range 

interactions of each cation with oxygen atoms, we toke use of the initial ML potential trained 

in iteration 0 and performed enhanced sampling of ZrO2, SiO2, TiO2, Y2O3, and medium-

entropy ceramic system, respectively, to collect relevant configurations for the training of ML 

potential in iteration 1. To stepwise enlarge the training set and extend applicability of ML 

potential for longer range interactions, for iteration 2 and 3, we additionally performed 

enhanced sampling for ceramics with two types of cations (i.e., ZrTiO4, Zr2Y2O7, and 

ZrSiO4) and three types of cations (i.e., ZrTiSiO6 and Zr2Y2Ti2O11). For all the supplemental 

training set used here, the proportion of each cation are set to equal. From the fourth 

iterations, we only performed enhanced sampling simulations for the three traditional low-

entropy ceramic systems (i.e., ZrO2, (Zr0.83Y0.17)O2.17, and (Zr0.77Y0.15Si0.08)O2.24) and the 

medium-entropy ceramic system (Ti0.42Zr0.42Y0.08Si0.08)O2.08. By taking the stepwise active 

learning strategy, the effectiveness of ML potential increased and can characterize well 

atomic interactions from short to longer range. Details of the number of atoms in each 

configuration, and number of configurations of each system from iteration 0 to 5 was listed in 

Supplementary Table S1. Further, we verified the performance of final ML potential on 9 

supplemental systems with equal proportion of cations as well as four final systems. The true 

values of atomic energy and forces obtained with DFT calculations as functions of predicted 

values by ML potential were demonstrated in Figure S2 and S3, while the root mean square 

error (RMSE) in atomic energy and forces of ML potentials were given in each plot. The 
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final ML potential model at final iteration show good performance on predicting atomic 

energy and forces for each ceramic system.

Fabrication details of MECA

Fabrication of PAZ: Firstly, 0.2mol (64.45g) of zirconia chloride was dissolved in 300ml 

of methanol to form transparent solution, and 0.2mol (20.024g) of acetylacetone and 0.4mol 

(40.476g) of triethylamine were dissolved in another 300ml of methanol to obtain pale yellow 

transparent solution. Then, the methanol solution of acetylacetone and triethylamine was 

atomized into zirconia chloride methanol solution under the conditions of 4-20 °C (ice bath 

can be used) and stirring with white smoke. After that, the mixture was continue stirred for 

24h to obtain a golden yellow transparent solution containing zirconium organic polymer. 

Afterwards, methanol was evaporated by reduced pressure distillation under 60 °C. The PAZ 

was dissolved by 200mol of acetone and triethylamine hydrochloride was filtered out, and 

acetone was removed by reduced pressure distillation at 70 °C to obtain the yellow powder, 

PAZ.

Preparation of electrospinning precursor: 0.3 mol (8 g) of PAZ and 0.06 mol (2.549 g) of 

yttrium (III) nitrate hexahydrate were dissolved in 7 g methanol with stirring at 60 °C to 

obtain golden transparent solution A. 0.06 mol (1.3257 g) of (3-Aminopropyl) triethoxysilane 

was dissolved in another 4g methanol with stirring at 60 °C to obtain transparent solution B. 

0.3mol (10.19g) of tetrabutyl titanate was dissolved in another 6g methanol with stirring at 60 

°C to obtain transparent solution C. And 50 mg PEO was dissolved in 5g methanol with 

stirring at 60 °C for 30min to obtain transparent solution D. Then, solution B was added into 

A with stirring to obtain solution E. After that, solution C was added into E to obtain solution 

F. In the end, solution D was added into F with further stirring to form the homogeneous 

precursor solution.
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Figure S1.
Work flow for the training of ML potential for medium-entropy ceramic system. (A) A 

stepwise training strategy was taken to ensure the compatibility of final ML potential with 

each kind of atomic arrangement. The ML potential at iter 0 is trained with configurations 

obtained with a classical potential, while the other configurations collected in iter 1-5 were 

obtained with ML potential trained in previous iteration. (B) Active learning procedure for 

training of ML potential for medium-entropy ceramic system.
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Figure S2.
True values of atomic energy as functions of predicted values produced by final ML 

potential for (A) 9 set of supplemental training sets with equal proportion of cations and (B) 

4 set of systems with unequal proportion of cations.
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Figure S3.
True values of atomic forces as functions of predicted values produced by final ML 

potential for (A) 9 set of supplemental training sets with equal proportion of cations and (B) 

4 set of systems with unequal proportion of cations.
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Figure S4.
Initial states of the seeding simulation of the four systems.To reflect the difference in 

nucleation barrier, there are different numbers of nuclei at the initial stage in each 

system, 8 in (A), ZrO2, 6 in (B), (Zr0.83Y0.17)O2.17, 5 in (C), (Zr0.77Y0.15Si0.08)O2.24, and 3 in 

(D), (Ti0.42Zr0.42Y0.08Si0.08)O2.08. 
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Figure S5.
Time dependence of averaged grain size of medium-entropy ceramics comparing to 

three low-entropy ceramics by MD simulation. The grain size in ZrO2 was much higher 

due to the low diffusion barrier of Zr cation. The grain size in (Zr0.83Y0.17)O2.17 was reduced 

due to the solute drag effects of Y3+. The silica further reduced grain size in 

(Zr0.77Y0.15Si0.08)O2.24, and the grain size in (Ti0.42Zr0.42Y0.08Si0.08)O2.08 almost remained the 

original value.
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Figure S6.
Electric filed distribution map of FFE by COMSOL. The spinneret and collector are 

annotated in the figure. Red lines with arrows indicated the electric field line. The surfaces 

with different color ranging from blue to red indicated the equipotential surface with 

increased potential. Pictures from different perspectives at spinneret, collector, and top view 

were given to illustrate the details. 
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Figure S7.
Differences between traditional electrospinning and far-field electrospinning. (A) The 

schematic illustration of traditional electrospinning. (B) The optical image of 2D non-woven 

membrane by traditional electrospinning. (C) The schematic illustration of far-field 

electrospinning. (D) The optical image of 3D flurry aerogel obtained by far-field 

electrospinning. Traditional electrospinning tends to form 2D non-woven membrane 

deposited by electrospun fibers on the metal plate collector due to the strong electro field 

force. In comparison, far-field electrospinning could increase the entanglement between 

fibers and effectively reduce the electric field force at the linear collectors, forming the 3D 

porous structure of precursor aerogels. 
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Figure S8.
SEM images of ceramic fibrous aerogels fabricated via FFE with highly entangled and 

intertwined structure. The highly entangled fibrous network endowed the ceramic aerogels 

with exceptional deformation capability and fatigue resistance compared to the randomly 

stacking structure, which could lead to friction and sliding between adjacent fibers and severe 

structure degradation.
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Figure S9.
Optical images of the MECA. (A) The as-spun fibrous aerogels with rectangular shape 

before calcination. (B) The MECA obtained by thermal calcination in air at 1,000 ℃ for 1h. 

(C) Diverse shapes of MECA.
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Figure S10.
Density measurement of MECA (for example, 4.48 mg cm-3) with Micro balance.
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Figure S11.
Optical images of low-entropy ceramic aerogels. (A) ZrO2, (B) (Zr0.83Y0.17)O2.17, (C) 

(Zr0.77Y0.15Si0.08)O2.24 fibrous aerogels.
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Figure S12.
XRD spectra of MECA calcined at different temperatures.   



18

Figure S13.
Raman spectra of MECA calcined at different temperatures.
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Figure S14.
XPS spectra of MECA calcined at different temperatures.
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Figure S15.
Ti 2p, Zr 3d, Si 2p, and Y 3d XPS spectra of MECA.
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Figure S16.
The SEM mapping of Ti, Zr, Si, Y, respectively.
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Figure S17.
(A)SEM image of the MECA. (B) Diameter distribution of the fibers.
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Figure S18.
TEM images of (A) ZrO2, (B) (Zr0.83Y0.17)O2.17, (C) (Zr0.77Y0.15Si0.08)O2.24, and (D) 

(Ti0.42Zr0.42Y0.08Si0.08)O2.08. Insets, the corresponding selected area electron diffraction 

(SAED). 
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Figure S19.
High resolution TEM images of MECA, indicating the polycrystalline structure with high 

lattice distortion.



25

Figure S20.
Optical images of MECA with near-zero ν at different strain.
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Figure S21.
ν of MECA under strain during loading and unloading.
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Figure S22.
SEM images of in situ compression test of MECA. The bending corner formed by curved 

fibers could support the compressive stress and storage the elastic potential energy. With 

increasing compression strain, the curvature of the fibers gradually decreased. After the 

removal of external stress, the curved fibers could provide additional resilience compared to 

lamellar structure. 
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Figure S23.
MD fracture simulations of ZrO2, (Zr0.83Y0.17)O2.17, (Zr0.77Y0.15Si0.08)O2.24, and 

(Ti0.42Zr0.42Y0.08Si0.08)O2.08 fibers. The fracture strain of MECA fiber is enhanced compared 

to other fibers, while there is no increase in fracture stress. Because the incorporation of TiO2 

could generate softening effects and compromise the mechanical strength of ceramic fibers. 

We adopted the medium-entropy strategy to overcome the softening effect of the TiO2, and 

enhance the fracture strain while maintaining the fracture stress.
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Figure S24.
MD fracture simulation images of fiber of (A) ZrO2, (B) (Zr0.83Y0.17)O2.17, (C) 

(Zr0.77Y0.15Si0.08)O2.24, (D) (Ti0.42Zr0.42Y0.08Si0.08)O2.08. 
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Figure S25.
MD fracture simulation images of nanofiber of (Ti0.42Zr0.42Y0.08Si0.08)O2.08 under tensile 

strain from 0% to 40%. The grains in the quaternary system are much smaller compared to 

other systems. The abundant boundaries could perform as lubrication region, enhancing the 

deformability of the fibers. With the grain growth, the large-grained region would lead to   

concentrated external stress and catastrophic failure with reduced deformability.
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Figure S26.
TEM images of MECA prepared by different calcination temperatures (A) 1,000 ℃, (B) 

1,100 ℃, (C) 1,200 ℃, (D) 1,300 ℃.
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Figure S27.
Size distributions of the grains of the fiber prepared by different calcination 

temperatures (A) 1,000 ℃, (B) 1,100 ℃, (C) 1,200 ℃, (D) 1,300 ℃.
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Figure S28.
Home-design pneumatic apparatus for thermal shock test of MECA. The tube furnace 

was used as a hot end at 1,100 ℃. Liquid nitrogen was used as a cold end at -196 ℃. The 

sample was drove back and forth between the hot and cold ends by air flow. 
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Figure S29.
Infrared images of one thermal shock cycle of MECA with temperature swing up to 

~1,300 °C.
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Figure S30.
Infrared images of MECA compressed at cyclic strain of 50% under torch blowing 

flames.



36

Figure S31.
MECA annealed at 1450 and 1500 ºC for 1h. (A) Shrinkage rate of MECA annealed at 

different temperature, (B) Optical images of MECA annealed before 1450 and 1500 ℃.
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Figure S32.
Illustration of heat transfer of ceramic fibrous aerogels. Air molecules with mean free 

path over 70 nm in fibrous aerogels could transfer heat by thermal motion or collision with 

each other, and are the main source of heat transfer at temperature below 100 °C. 
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Figure S33.
MD simulation of solid conduction in (A) SiO2, (B) ZrO2, (C) (Zr0.83Y0.17)O2.17, (D) 

(Zr0.77Y0.15Si0.08)O2.24, and (E) (Ti0.42Zr0.42Y0.08Si0.08)O2.08 fibers.
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Figure S34.
Time dependence of κs of (A) SiO2, (B) ZrO2, (C) (Zr0.83Y0.17)O2.17, (D) 

(Zr0.77Y0.15Si0.08)O2.24, (E) (Ti0.42Zr0.42Y0.08Si0.08)O2.08 fibers along axial direction.



40

Figure S35.
Thermal sealing performance of (A) no seal, (B) SiO2 commercial seal, and (C) MECA.
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Figure S36.
Thermal sealing performance of MECA with large amplitude vibration.
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Table S1. Details of the collected configurations during stepwise training procedure of the 
ML potential for the medium-entropy ceramic system.

Iter System No. atoms No. candidate 
configurations

Candidate 
Percentage

0 (Ti0.42Zr0.42Y0.08Si0.08)O2.08 130 4308 33.06
(Ti0.42Zr0.42Y0.08Si0.08)O2.08 130 8894 /

ZrO2 108 2142 11.51
Y2O3 90 1179 6.60
SiO2 108 894 4.98

1

TiO2 108 462 2.15
(Ti0.42Zr0.42Y0.08Si0.08)O2.08 130 1144 /

ZrTiO4 108 993 3.87
Zr2Y2O7 99 596 5.85
ZrSiO4 108 1594 5.00
ZrO2 108 1070 /
Y2O3 90 2303 /
SiO2 108 1735 /

2

TiO2 108 675 /
(Ti0.42Zr0.42Y0.08Si0.08)O2.08 130 816 /

ZrTiSiO6 108 1047 1.98
Zr2Y2Ti2O11 102 1047 1.98

ZrTiO4 108 1047 /
Zr2Y2O7 99 2492 /
ZrSiO4 108 1046 /

3

ZrO2 108 2863 /
(Ti0.42Zr0.42Y0.08Si0.08)O2.08 130 2282 /

ZrO2 96 827 3.00
(Zr0.83Y0.17)O2.17 128 1374 2.60

4

(Zr0.77Y0.15Si0.08)O2.24 118 3768 7.15
(Ti0.42Zr0.42Y0.08Si0.08)O2.08 189 831 1.58

ZrO2 96 759 /
(Zr0.83Y0.17)O2.17 93 2905 5.50

5

(Zr0.77Y0.15Si0.08)O2.24 111 1683 3.19
Total 52776 100.00

For each iteration, we report the number of atoms, the number of selected configurations, and 
the candidate percentage of each system among the whole training data set.
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Movie S1. 
Compression test of MECA at 95% strain. 

Movie S2.
Cyclic compression test of MECA at 50% strain.

Movie S3.
Tensile test of MECA.

Movie S4. 
Bending test of MECA.

Movie S5. 
Thermal shock test of MECA.

Movie S6. 
Thermoelasticity of MECA under torch flame.

Movie S7. 
Thermal sealing performance of MECA.

Movie S8. 
Thermal sealing performance of MECA under large amplitude vibration.
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