Supporting Information

High-performance zinc-air batteries enabled by hybridizing

atomically dispersed FeN₂ with Co₃O₄ nanoparticles

Fukang Gui,^{a‡} Qiu Jin,^{b‡} Dongdong Xiao,^c Zehua Jin,^d Yingchuan Zhang,^a Yingjian Cao,^a Ming Yang,^d Qinggang Tan,^e Cunman Zhang,^a Samira Siahrostami, ^{b*} and Qiangfeng Xiao^{a*}

^aSchool of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China

^bDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

^cInstitute of Physics, Chinese Academy of Sciences, 8 Nansan Street, Zhongguancun, Haidian District, Beijing, 100190, China

^d Department of Chemical & Biomolecular Engineering, College of Engineering, Computing and Applied Sciences, Clemson University, 206 S. Palmetto Blvd, Clemson, SC 29634, USA

^e School of Materials Science & Engineering, Tongji University (Jiading Campus),
4800 Cao'an Road, Shanghai, 201804, China

*Corresponding Authors. E-mail: xiaoqf@tongji.edu.cn (Q.X.); samira.siahrostami@ucalgary.ca (S.S.).

[‡]These authors contributed equally to this work

Fig. S1 (a-d) Aberration-corrected HAADF-STEM images of Fe-HPNC. Scale bar: 2 nm.

Fig. S2 STEM image and corresponding elemental mapping images of Fe-HPNC. Scalebar,50nm.

Fig. S3 (a-f) TEM and HR-TEM images of Fe-HPNC/Co₃O₄. Scale bar: (a) 500 nm, (b) 200 nm, (c) 50 nm, (d) 20 nm, (e) 10 nm, (f) 5 nm.

Fig. S4 (a) Nitrogen absorption-desorption isotherms and (b) corresponding pore size distribution curves of Fe-HPNC, Fe-HPNC/ Co_3O_4 and HPNC.

Fig. S5 (a) Nitrogen absorption-desorption isotherms and (b) corresponding pore sizedistributioncurvesof Co_3O_4 nanoparticles.

Fig. S6 XPS survey spectra of (a) Fe-HPNC-700, (b) Fe-HPNC-800 and (c) Fe-HPNC-900.

Fig. S7 High-resolution C1s, N1s and Fe 2p spectra of (a,b,c) Fe-HPNC-700, (d,e,f)Fe-HPNC-800and(g,h,i)Fe-HPNC-900.

Fig. S8 (a) XPS survey spectra and high-resolution (b) C 1s, (c) N 1s, (d) Fe 2p and (e)Co2pspectraofFe-HPNC/Co₃O₄.

Fig. S9 Configurations of nitrogen dopants of Fe-HPNC-1:1, Fe-HPNC-2:1 and Fe-HPNC-4:1.

Fig. S10 XRD patterns of (a) Fe-HPNC-700, Fe-HPNC-800, Fe-HPNC-900 and (b)Fe-HPNC-1:1,Fe-HPNC-2:1andFe-HPNC-4:1.

Fig. S12 Raman spectra of Fe-HPNC-700, Fe-HPNC-800 and Fe-HPNC-900.

Fig. S13 Fe k-edge (a) XANES spectra and (b) Fourier-transfer EXAFS spectra of Fe-HPNC and Fe-HPNC/ Co_3O_4 .

Fig. S14 Co k-edge (a) XANES spectra and (b) Fourier-transfer EXAFS spectra of Fe-HPNC/Co $_3O_4$ andcommercialCo $_3O_4$.

Fig. S15 Cycle voltammetry (CV) curves of (a) Fe-HPNC/Co₃O₄ and (b) Pt/C in 0.1 M KOH solution saturated with oxygen (red lines) and nitrogen (black lines). Scan rate: $50 mtext{mV} mtext{s}^{-1}$.

Fig. S16 ORR polarization curves of various catalysts in O_2 -saturated 0.5 M H_2SO_4 solution with a rotating speed of 1600 rpm and a scan rate of 10 mV s⁻¹.

Fig. S17 ORR polarization curves of various catalysts synthesized with different (a) annealing temperature, (b) annealing time, (c) mass ratios of FeCl₃ to HPNC and (d) mass ratios of Fe-HPNC to Co_3O_4 in O_2 -saturated 0.1 M KOH solution with a rotating speed of 1600 rpm and a scan rate of 10 mV s⁻¹.

Fig. S18 ORR polarization curves at various rotating speeds and corresponding K-L plots at various potentials of **(a,b)** Fe-HPNC/Co3O4 and **(c,d)** Pt/C in O₂-saturated 0.1 M KOH solution.

Fig. S19 OER polarization curves of various catalysts synthesized with different (a) annealing temperature, (b) annealing time, (c) mass ratios of FeCl₃ to HPNC and (d) mass ratios of Fe-HPNC to Co_3O_4 in O_2 -saturated 0.1 M KOH solution with a rotating speed of 1600 rpm and a scan rate of 10 mV s⁻¹.

Fig. S20 ORR chronoamperometric responses of Fe-HPNC/Co₃O₄ and Pt/C at 0.65 V (vs. RHE) and 1600 rpm in O₂-saturated 0.1 M KOH solution with the addition of 6 ml 3 M methanol.

Fig. S21 Electrochemical impedance spectrum (EIS) of Fe-HPNC / Co_3O_4 , HPNC and Pt/C at 0.85 V (vs. RHE) with the frequency ranging 10 kHz to 0.01 Hz and an amplitude of 5 mV in O₂-saturated 0.1 M KOH solution.

Fig. S22 CV curves of (a) Fe-HPNC-700, (b) Fe-HPNC-800, (c) Fe-HPNC-900 and (d) Fe-HPNC/ Co_3O_4 with different scan rates in 0.1 M KOH solution.

Fig. S23 Comparison of the electrochemical surface areas of various catalysts.

Fig. S24 Schematic illustration of the fabricated Zn-air battery.

Fig. S25 Galvanostatic discharge curves of Zn-air battery employing Fe-HPNC/Co₃O₄ as cathodic catalysts at 5 mA cm⁻² and 25 mA cm⁻².

Fig. S26 Galvanostatic discharge-charge cycling curves of Zn-air batteries employing $Pt/C+RuO_2/C$, HPNC and Fe-HPNC/Co₃O₄ as cathodic catalysts at 5 mA cm⁻² showing the changes of the voltage windows.

Sample	S _{BET} (m ² g ⁻¹)	S _{micro} (m ² g ⁻¹)	S _{meso} (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
Fe-HPNC	1083.831	224.441	859.39	2.661
Fe-HPNC/Co ₃ O ₄	708.268	156.775	551.492	1.447
HPNC	1458.991	369.012	1089.98	2.617
Co ₃ O ₄	61.493	49.511	11.912	0.197

 Table S1 Comparison of the porosity of various catalysts.

sample	C wt%	N wt%	O wt%	Fe wt%	Co wt%
Fe-HPNC-1:1	86.97	5.07	5.72	2.24	/
Fe-HPNC-2:1	86.23	4.67	5.67	3.45	/
Fe-HPNC-4:1	85.95	4.55	5.25	4.25	/
Fe-HPNC-700	83.73	4.8	6.56	4.31	/
Fe-HPNC-800	86.23	4.67	5.67	3.45	/
Fe-HPNC-900	87.79	4.54	5.48	2.19	/
Fe-HPNC/Co ₃ O ₄	63.01	2.96	22.58	2.71	7.89

 Table S2 Elemental contents of various catalysts based on XPS results.

sample	Fe wt%	Co wt%
Fe-HPNC-1:1	0.34	/
Fe-HPNC-2:1	2.04	/
Fe-HPNC-4:1	2.84	/
Fe-HPNC-700	2.46	/
Fe-HPNC-800	2.04	/
Fe-HPNC-900	1.12	/
Fe-HPNC/Co ₃ O ₄	1.56	7.29

 Table S3 Fe and Co contents of various catalysts based on ICP-OES results.

Samples	Path	C _N	R(Å)	R factor
Fe-HPNC	Fe-N	1.8(9)	1.99	
	Fe-O	0.3(1)	2.33	0.02
	Fe-C	1.2(5)	2.98	0.03
	Fe-C	1.4(8)	3.55	

 Table S4 Fe K-edge EXAFS curve fitting parameters.

 C_N is coordination number; R is the distance between absorber and backscatter atoms; R factor indicates the goodness of the fit; ΔE_0 is inner potential correction which is 4.09±3.6; S₀² is the amplitude reduction factor which is fixed to be 0.75.

Catalysts	Fe content (ICP-OES)	Active sites	E _{1/2} (V vs. RHE)	Electrolyte	Ref.
Fe-HPNC	2.04 wt%)	FeN ₂	0.886	0.1 M KOH	This work
Fe _{SA} -N-C	1.76 wt%	FeN ₄	0.891	0.1 M KOH	1
Fe-Z8-C	3 wt%	FeN ₄	0.871	0.1 M KOH	2
FeNCNs-800	0.44 at%	FeN ₄ and	0.89	0.1 M KOH	3
SA-Fe-NHPC	1.25 wt%	FeN _x	0.93	0.1 M KOH	4
HSAC/Fe-3	2.78 wt%	FeN ₄	0.814	$0.5~M~\mathrm{H_2SO_4}$	5
FeNC-CVD- 750	2.0 wt%	FeN ₄	0.85	$0.5~M~H_2SO_4$	6
Fe, Mn/N-C	2.3 wt%	Fe, Mn- N ₆	0.928	0.1 M KOH	7
KB-tpy-Fe-700	-	FeN ₃	0.81	0.1 M KOH	8
Fe-N-C-900	0.66 at%	FeN ₂	0.927	0.1 M KOH	9
Fe-SNC	0.34 at%	FeN ₂	0.77	$0.5~\mathrm{M~H_2SO_4}$	10
FeCo/FeN ₂ /NH OPC	0.73 at%	Fe-N ₂	0.86	0.1 M KOH	11
FeN ₂ -NOMC	0.5 at%	Fe-N ₂	0.863	0.1 M KOH	12

Table S5 Comparisons of Fe content, active sites and ORR performance for Fe-HPNCand other Fe-based single-atom catalysts.

Catalysts	E _{1/2} (V vs. RHE)	E _{j=10} (V vs. RHE)	ΔE (V)	Peak Power Density (mW cm ⁻²)	Durability	Ref.
Fe-HPNC /Co ₃ O ₄	0.886	1.457	0.571	236	165 h at 5 mA cm ⁻²	This work
HPNC	0.854	1.474	0.62	201	120 h at 5 mA cm ⁻²	13
Co ₃ O ₄ C-NA	0.78	1.52	0.74	-	-	14
Co@Co ₃ O ₄ /NC	0.80	1.65	0.85	-	-	15
Co ₃ O ₄ /NPGC	0.842	1.725	0.883	84	80 h at 5 mA cm ⁻²	16
Co ₃ O ₄ /CC	0.79	1.72	0.93	35	25 h at 3 mA cm ⁻²	17
Co ₃ O ₄ -NP/N-rGO	0.76	1.61	0.85	118	1000 min at 5 mA cm ⁻²	18
NC-Co ₃ O ₄ -90	0.87	1.588	0.718	82	210 h at 10 mA cm ⁻²	19
ZIF-L-D- Co ₃ O ₄ /CC	0.9	1.54	0.64	74	384 h at 5 mA cm ⁻²	20
CoO _x /N-RGO	0.896	1.6	0.704	120	10 h at 6 mA cm ⁻²	21
NP-Co ₃ O ₄ /CC	0.9	1.56	0.66	200	400 h at 5 mA cm ⁻²	22
Co/Co ₃ O ₄ @CoS- SNC	0.86	1.59	0.73	101	1000 min at 5 mA cm ⁻²	23

Table S6 Comparisons of bifunctional electrocatalytic activities and the performance of the fabricated Zn-air batteries based on Fe-HPNC/ Co_3O_4 and other recently reported non-noble metal catalysts.

References

- 1 L. Jiao, G. Wan, R. Zhang, H. Zhou, S. H. Yu and H. L. Jiang, *Angew. Chem. Int. Ed.* 2018, **57**, 8525-8529.
- 2 Q. T. Liu, X. F. Liu, L. R. Zheng and J. L. Shui, *Angew. Chem. Int. Ed.*, 2018, **57**, 1204-1208.
- 3 X. Ao, W. Zhang, Z. Li, L. Lv, Y. Ruan, H. Wu, W. Chiang, C. Wang, M. Liu and Zeng, X. *J. Mater. Chem. A*, 2019, **7**, 11792-11801.
- 4 G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, *Adv. Mater.*, 2020, **32**, 1907399.
- 5 J. Guo, B. Li, Q. Zhang, Q. Liu, Z. Wang, Y. Zhao, J. Shui, Z. Xiang, Adv. Sci., 2021, 8, 2002249.
- 6 L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen and Q. Jia, *Nat. Mater.*, 2021, **20**, 1385-1391.
- 7 G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B. Lu, A. Xue, X. H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu and J. N. Zhang, *Nat. commun.*, 2021, **12**, 1734.
- 8 M. F. Holly, I. I. Ebralidze, P. D. Meline, O. V. Zenkina and E. B. Easton, J. *Electrochem. Soc.*, 2020, **167**, 084520.
- 9 C. Zhu, Q. Shi, B. Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S. P. Beckman, D. Su and Y. Lin, *Adv. Energy Mater.*, 2018, **8**, 1801956.
- 10 H. Shen, E. G. Espino, J. Ma, K. Zang, J. Luo, L. Wang, S. Gao, X. Mamat, G. Hu, T. Wagberg and S. Guo, *Angew. Chem. Int. Ed.*, 2017, 56, 13800-13804.
- 11 Y. Wang, M. F. Qiao and X. Mamat, Chem. Eng. J., 2020, 402, 126214.
- 12 H. Shen, E. G. Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu and S. Guo, *Nano Energy*, 2017, **35**, 9-16.
- 13 F. Gui, Q. Jin, D. Xiao, X. Xu, Q. Tan, D. Yang, B. Li, P. Ming, C. Zhang, Z. Chen, S. Siahrostami and Q. Xiao, *Small*, 2022, **18**, 2105928.
- 14 T. Y. Ma, S. Dai, J. Mietek and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- 15 A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer and W. Schuhmann, *Angew. Chem. Int. Ed.*, 2016, **55**, 4087-4091.
- 16 G. Li, X. Wang, J. Fu, J. Li, M. G. Park, Y. Zhang, G. Lui and Z. Chen, *Angew. Chem. Int. Ed.*, 2016, **55**, 4977-4982.
- 17 Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, *Adv. Mater.*, 2018, **30**, 1703657.
- 18 X. Han, G. He, Y. He, J. Zhang, X. Zheng, L. Li, C. Zhong, W. Hu, Y. Deng and T. Y. Ma, *Adv. Energy Mater.*, 2018, 8, 1702222.
- 19 C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S. J. Pennycook and J. Wang, *Adv. Mater.*, 2017, **29**, 1704117.
- 20 Y. Zhang, Z. Pan, X. Wang, J. Yang, Y. Qiu, S. Xu, Y. Lu, Q. Huang and W. Li, *Adv. Sci.*, 2019, **6**, 1802243.

- 21 T. Zhou, W. Xu, N. Zhang, Z. Du, C. Zhong, W. Yan, H. Ju, W. Chu, H. Jiang, C. Wu, Y. Xie, *Adv. Mater.*, 2019, **31**, 1807468.
- 22 X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin, G. Nam, E. Zschech, J. Cho, J. Zhang, X. Feng, *Energy Stor. Mater.*, 2020, **26**, 157-164.
- 23 H. Pan, X. Huang, Z. Lu, Z. Zhang, B. An, D. Wu, T. Wang, X. Chen, F. Cheng, *Chem. Eng. J.*, 2021, **419**, 129619.