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Fig. S1. SEM images and EDS mapping of NNMO sample. 



Fig. S2. SEM images and EDS mapping of NNZMTO sample. 



Fig. S3. Charge-discharge and dQ/dV curves: The first four charge-discharge (a) and 

corresponding dQ/dV curves (b) of NNZMTOF, NNZMTO and NNMO at low 

current density of 0.2C.

 



Fig. S4. The comparing investigation of cycling performance on NNZMTOF, 

NNZMO, NNMTO and NNMO at 1C.



Fig. S5. Comparing energy density of three samples during 100 cycles at 1C.



Fig. S6. Comparison of surface morphology of electrodes before and after 100 cycles: 

(a, b) NNMO; (c, d) NNZMTOF.



Fig. S7. Ex-site XPS analysis of NNZMTO at different states: (a) Ni 2p and (b) Mn 

2p high-resolution spectra.



Fig. S8. Multi-sweep CVs of NNMO.



Fig. S9. (a) EIS results of NNZMTO at various temperatures; (b) multi-sweep CVs of 

NNZMTO at various scan rates.



Table S1 Crystallographic parameters of NNZMTOF refined by the Rietveld method.

Space group P63/mmc

Lattice
Hexagonal

a[Å]
2.889369

c[Å]
11.171439

V[Å3]
80.769260

Rwp(%)
6.37

Rp(%)
4.62

Atom Site x y z Occ.
Naf 2b 0   0 0.25 0.33
Nac 2d 0.66670    0.33330 0.25 0.33
Ni 2a 0 0 0 0.28
Zn 2a 0 0 0 0.05
Mn 2a 0 0 0 0.62
Ti 2a 0 0 0 0.05
O 4f 0.66670    0.33330 0.08464 0.975
F 4f 0.66670    0.33330 0.08464 0.025



Table S2 The comparison of electrochemical performance of various layered oxide 

cathodes.

Materials Potential 

window 

(V)

Rate 

performance 

(mA h g-1)

Capacity 

retention 

(%/cycling 

number)

Ref.

O3-Na[Ni2/3Ru1/3]O2 1.5–4.6 160(210) 79% (200) [1]
O3-Na(Fe0.2Co0.2Ni0.2Ti0.2Sn0.1Li0.1)O2 2.0–4.1 137.7 (10) 81% (100) [2]
O3-Na0.93Li0.12Ni0.25Fe0.15Mn0.48O2 2.0–4.2 100(1600) 82.8% (200) [3]
O3-NaFe0.25Mn0.25Ni0.25Ti0.25O2 1.5–4.0 102.2(200) 72% (300) [4]
O3-NaNi0.2Mn0.2Fe0.6O2 1.5–4.2 112.5 (24) 81.8% (100) [5]
O3- NaNi0.4Mn0.4Cu0.1Ti0.1O2 2.0–4.4 170.1 (15) 55% (100) [6]
P3-Na0.75Mg0.08Co0.10Ni0.2Mn0.60O2 2.0–4.3 120 (30) 87.75(100) [7]
P3- Na0.5Mg0.15Al0.2Mn0.65O2 2.0–4.5 122 (200) 82% (100) [8]
P3-Na0.6Ni0.3Mn0.7O2 1.5–4.0 170 (50) 49.2% (150) [9]
P2/O3-Na0.67Li0.11Fe0.36Mn0.36Ti0.17O2 1.5-4.2 235(20) 85.4% (100) [10]
P2/O3-Na0.85Mn0.5Ni0.4Ti0.1O2 2.0–4.0 130(12) 91% (500) [11]
P2/O3-Na2/3Ni1/3Mn1/3Sn1/3O2 2.5–4.15 70(240) 82.2% (600) [12]

98(170) 81.7% (100)NNZMTOF 2.5–4.35
79.5(1700) 86% (1000)
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