Supporting information

Large size $BiVO_4$ photoanode with high-stability for efficient water oxidation and wastewater treatment coupled with H_2 evolution

Yan Yang^a, Shipeng Wan ^{ab*}, Si Li^a, Ruonan Wang^a, Man Ou^c, Biming Liu^d, Qin Zhong^{a*}

^aSchool of Chemical Engineering, Nanjing University of Science and Technology,

Nanjing, Jiangsu 210094, PR China

^bDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

^cSchool of Energy Science and Engineering, Nanjing University of Technology,

Nanjing, Jiangsu 211816, PR China

^dSchool of Environment, Tsinghua University, Beijing, 100084, PR China

*Corresponding author

Email Address: wansp0311@163.com (S. Wan); zq304@njust.edu.cn. (Q. Zhong)

Supplementary figures and discussions

Fig. S1. (a) LSV curves of mixed gas of NH_3 and N_2 annealed $BiVO_4$ photoanode at

various time and (b) various temperatures.

Fig. S2. XRD pattern of fluorine-doped SnO₂ (FTO), BiVO₄, N-BiVO₄, BiVO₄/NiFeO_x, N-BiVO₄/NiFeO_x.

Fig. S3. SEM image of the top view of BiVO₄.

Fig. S4. TEM images of N-BiVO₄/NiFeO_x.

Fig. S5. Raman spectra of N-BiVO₄ and N-BiVO₄/NiFeO_x photoanodes.

Fig. S6. TEM-EDS (a) elemental mapping (b) and line scanning analysis for N-BiVO₄/NiFeO_x photoanodes.

As shown in Fig. S5a, the dimensions Bi, Fe and Ni element distributions in the TEM-EDS mapping have been precisely measured, demonstrating larger distribution of Fe and Ni element (62 nm) than Bi element (58 nm). In addition, from line-scan image (Fig. S5b), before the appearance of Bi element, obvious Fe and Ni signal has been detected in the line-scan profiles. Base-on the above analysis, it can be confirmed that the surface layer on N-BiVO₄ crystal was NiFeO_x.

Fig. S7. XPS survey scan spectra of BiVO₄, N-BiVO₄ and N-BiVO₄/NiFeO_x.

Fig. S8. High-resolution XPS spectra of N-BiVO₄/NiFeO_x: (a) Ni 2p; (b) Fe 2p.

Fig. S9. VB XPS of N-BiVO₄ and N-BiVO₄/NiFeO_x.

Fig. S10. The repeatability of LSV curves for N-BiVO₄/NiFeO_x photoanodes measured

in 0.5 M KBi electrolyte.

Fig. S11. The multiple test LSV curves for N-BiVO₄/NiFeO_x photoanodes measured in 0.5 M KBi electrolyte.

Fig. S12. Chopped photocurrent density in 0.5 M KBi electrolyte (pH=9.3).

Fig. S13. (a)LSV curves in dark for $BiVO_4$, N- $BiVO_4$ and N- $BiVO_4$ /NiFeO_x; (b) the estimated Tafel slope for $BiVO_4$, N- $BiVO_4$ and N- $BiVO_4$ /NiFeO_x.

Fig. S8a shows that the N-BiVO₄/NiFeO_x photoanode possesses a lower overpotential and steeper current density, indicating its outstanding electrochemical performance.

In Fig. S8b, the estimated Tafel slope for N-BiVO₄/NiFeO_x (228 mV dec⁻¹) is small than that of N-BiVO₄ (347 mV dec⁻¹) and BiVO₄ (491 mV dec⁻¹), indicating that an enhanced oxygen evolution kinetics.

Fig. S14. Calculated photocurrent density curves by integrating IPCE curves (Fig. 3c) and the standard AM 1.5G solar spectrum.

The theoretical photocurrent densities (Jc) for synthetic photoanodes by integrating IPCE values and standard AM 1.5G solar spectrum were obtained by the following equation [1]:

$$J_{C}(mA/cm^{2}) = \int_{350}^{600} \frac{\lambda(nm) \times IPCE(\lambda) \times P_{light}(mW/cm^{2})}{1240} d(\lambda)$$

Where P_{light} and λ were photocurrent density and the corresponding light wavelength, respectively. Therefore, the calculated values of photocurrent density for BiVO₄, N-BiVO₄, BiVO₄/NiFeO_x and N-BiVO₄/NiFeO_x were 1.23, 2.28, 3.80 and 5.43 mA/cm², respectively. According to Fig. 3a, the measured values for BiVO₄, N-BiVO₄, BiVO₄/NiFeO_x and N-BiVO₄/NiFeO_x were 1.31, 2.37, 3.81, 5.40 mA/cm², respectively. The calculated values are very near the measured values, suggesting the simulated solar light was excellently matched with the standard AM 1.5G solar spectrum.

Fig. S15. Photocurrent density under chopping irradiation of $BiVO_4$, N- $BiVO_4$, $BiVO_4/NiFeO_x$ andN- $BiVO_4/NiFeO_x$ photoanodes.

Fig. S16. Mott-Schottky curves under dark of $BiVO_4$, N- $BiVO_4$ and N- $BiVO_4$ /NiFeO_x.

Fig. S17. PL spectrum under laser excitation of 380nm: (a) FTO (SnO₂) substrates; (b) as-prepared photoanodes.

Fig. S18. Open-circuit potential under AM 1.5 G illumination in 0.5 M KBi electrolyte (pH=9.3).

Fig. S19. UV–vis absorbance spectrum of $BiVO_4$, N- $BiVO_4$, and N- $BiVO_4$ /NiFeO_x photoanodes.

Fig. S20. (a) Light harvesting efficiency (LHE) of $BiVO_4$, N- $BiVO_4$ and N- $BiVO_4$ /NiFeO_x photoanodes. (b) Spectra of the simulated solar light and corresponding J_{abs} .

LHE and J_{abs} could be calculated by the following equation [2]:

$$LHE = 1 - 10^{-A(\lambda)}$$
$$J_{abs} = J_{max} \times LHE$$

Where $A(\lambda)$ is absorbance at λ wavelength (nm). J_{max} is the maximum theoretical photocurrent (mA·cm⁻²) under the irradiation of simulated sunlight, and J_{abs} refers to photocurrent (mA·cm⁻²) when light harvesting efficiency is 100%.

Fig. S21. LSV curves of $BiVO_4$, N- $BiVO_4$ and N- $BiVO_4$ /NiFeO_x photoanodes in 0.5

M KBi electrolyte with and without hole scavenger (0.5 M Na₂SO₃).

The charge separation (η_{sep}) and charge transfer efficiencies (η_{tran}) were calculated by the following equation [3]:

 $\eta_{sep} = J_{HS}/J_{abs}$

 $\eta_{tran} = J_{Ph}/J_{HS}$

Where J_{HS} refer to photocurrent density (mA·cm⁻²) measured in KBi containing hole scavenger electrolyte and J_{Ph} is photocurrent density (mA·cm⁻²) performed in KBi electrolyte.

Fig. S22. Photocurrent density stabilities of N-BiVO₄/NiFeO_x and N-BiVO₄ photoanodes measured in 0.5 M KBi electrolyte at 1.23 V vs. RHE.

Fig. S23. High-resolution XPS spectra of N 1s for N-BiVO₄ before and after test.

Fig. S24. XRD patterns of N-BiVO₄/NiFeO_x photoanode before and after stability testing.

Fig. S22. TEM images of N-BiVO₄/NiFeO_x photoanode after stability test.

The HR-TEM image of N-BiVO₄/NiFeO_x exhibits that the thickness of NiFeO_x

co-catalyst layer is about 4 nm and uniformly decorated on the N-BiVO₄ surface.

Fig. S23. XPS spectra of N-BiVO₄/NiFeO_x photoanode before and after PEC measurements (a) Bi 4f; (b) V 2p; (c) O 1s and (d) N 1s.

Fig. S24. LSV curve of large size N-BiVO₄/NiFeO_x photoanode (9 cm²).

Fig. S25. Comparison of PEC kinetic curves of TCH removal by different photoanodes.

Fig. S26. LSV curves of N-BiVO₄/NiFeO_x photoanode measured in different electrolytes.

Fig. S27. (a) The LC-MS spectra of the TCH solution during degradation by N-BiVO₄/NiFeO_x photoanode; and (b) the total spectrum of mass-to-charge ratio (m/z).

samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
BiVO ₄	9.4	137.9
N-BiVO ₄	8.8	109.2
BiVO ₄ /NiFeO _x	9.5	77.4
N-BiVO ₄ /NiFeO _x	8.8	46.9

Table S1. The fitted results of EIS curves using the equivalent circuit model in Fig. 3f.(average of three experimental tests).

The R_s and R_{ct} refer to solution resistance plus the intrinsic conductivity of samples and charge transfer resistance, respectively [4].

samples	$\tau_{1}\left(ns\right)$	$ au_{2}\left(ns ight)$	τ_3 (ns)	A ₁ (%)	$A_{2}(\%)$	A ₃ (%)	$\tau_{avg}\left(ns\right)$
BiVO ₄	0.17	0.87	4.40	84.19	12.80	3.01	1.82
N-BiVO ₄	0.16	1.01	5.16	76.16	20.28	3.56	2.28
N-BiVO ₄ /NiFeO _x	0.13	1.35	7.00	89.04	8.61	2.35	3.35

Table S2. Decay-fitted parameters of TRPL decay curves for BiVO4, N-BiVO4 andN-BiVO4/NiFeOx photoanodes.

Triple-exponential function fitting was conducted to apply the TRPL decay curves, and the average recombination lifetime (τ_{ave}) was calculated by the equation [5, 6]:

$$L(t) = A_1 e^{-\frac{1}{\tau_1}} + A_2 e^{-\frac{1}{\tau_2}} + A_3 e^{-\frac{1}{\tau_3}} + y_0$$
$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

Where τ_1 , τ_2 and τ_3 refer to the time constant of the decay processes, and A_1 , A_2 and A_3 are their corresponding weighted amplitudes, respectively.

Dhata an a da a	Photocurrent density	Def
Photoanodes	(1.23 V vs. RHE)	Kel.
Bi _{1-x} VO ₄ /CO-Bi	4.5 mA/cm ²	S7
BiVO ₄ /FeOOH/NiOOH	4.2 mA/cm ²	S8
BiVO ₄ /Co-Sil	5.0 mA/cm ²	S9
β-FeOOH-B- BiVO ₄	4.96 mA/cm ²	S10
NiOOH/BP/BiVO ₄	4.48 mA/cm ²	S11
BiVO ₄ /ZnCoFe-LDH	3.43 mA/cm ²	S12
CoNi-MOFs/ BiVO ₄	3.2 mA/cm ²	S13
Mo:BiVO ₄ @TANF	5.10 mA/cm ²	S14
BiVO ₄ /FeOOH/TANi	4.6 mA/cm^2	S15
H-CoAl-LDH/BiVO ₄	3.5 mA/cm^2	S16
NiFe-MOFs/ BiVO ₄	4.61 mA/cm ²	S17
BiVO ₄ /Co ₃ O ₄ /CoFe-LDH	3.9 mA/cm ²	S18
BiVO ₄ -N/C-CoPOM	3.3 mA/cm^2	S19
N-BiVO ₄ /NiFeO _x	$5.40\pm0.1~mA/cm^2$	This work

 Table S3. Comparison of OER performance for BiVO4 based photoanodes.

Element	Atomic %	The proportion of	Atomic %	The proportion of
	(before testing)	relative to C 1s	(after testing)	relative to C 1s
		(before testing)		(after testing)
C 1s	32.79	100%	37.66	100%
Bi 4f	7.29	22.23%	6.05	16.06%
V 2p	14.97	45.65%	14.27	37.89%
O 1s	36.13	110.19%	34.76	92.30%
N 1s	1.93	5.89%	1.92	5.10%
Ni 2p	2.68	8.17%	1.58	4.20%
Fe 2p	4.2	12.81%	3.75	9.96%

Table S4. The elemental composition analysis from XPS for N-BiVO₄/NiFeO_x photoanode before and after testing.

References

- [1] B. Zhang, S. Yu, Y. Dai, X. Huang, L. Chou, G. Lu, G. Dong, Y. Bi, Nitrogenincorporation activates NiFeO_x catalysts for efficiently boosting oxygen evolution activity and stability of BiVO₄ photoanodes, Nat. Commun., 2021, **12**, 6969.
- [2] Y. Yang, S. Wan, R. Wang, M. Ou, X. Fan, Q. Zhong, NiFe-bimetal-organic framework grafting oxygen-vacancy-rich BiVO₄ photoanode for highly efficient solar-driven water splitting, J. Colloid Interface Sci., 2022, 629, 487-495.
- [3] S. Jin, X. Ma, J. Pan, C. Zhu, S.E. Saji, J. Hu, X. Xu, L. Sun, Z. Yin, Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes, Appl. Catal. B: Environ., 2021, 281, 119477.
- [4] T. Pajkossy, R. Jurczakowski, Electrochemical impedance spectroscopy in interfacial studies, Curr. Opin. Electrochem., 2017, 1, 53-58.
- [5] J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, X. Chen, Carrier dynamic process in allinorganic halide perovskites explored by photoluminescence spectra, Photonics Res., 2021, 9, 151-170.
- [6] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots, J. Mater. Chem. C, 2013, 1, 4908-4915.
- [7] Y. Lu, Y. Yang, X. Fan, Y. Li, D. Zhou, B. Cai, L. Wang, K. Fan, K. Zhang, Boosting Charge Transport in BiVO₄ Photoanode for Solar Water Oxidation, Adv. Mater., 2022, 34, 2108178.
- [8] W. Kim Tae, K.S. Choi, Nanoporous BiVO₄ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting, Science, 2014, 343, 990-994.

- [9] Q. Sun, T. Cheng, Z. Liu, L. Qi, A cobalt silicate modified BiVO₄ photoanode for efficient solar water oxidation, Appl. Catal. B: Environ., 2020, 277, 119189.
- [10] Z. Kang, X. Lv, Z. Sun, S. Wang, Y.-Z. Zheng, X. Tao, Borate and iron hydroxide co-modified BiVO₄ photoanodes for high-performance photoelectrochemical water oxidation, Chem. Eng. J., 2021, **421**, 129819.
- [11] K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi, S. Zhang, W. Kim, H. Zeng, J.H. Park, Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts, Nat. Commun., 2019, 10, 2001.
- [12] X. Wen, M. Fan, Q. Zhao, J. Li, G. Liu, Boosting the Photoactivity of BiVO₄
 Photoanodes by a ZnCoFe-LDH Thin Layer for Water Oxidation, Chem. Asian.
 J., 2021, 16, 4095-4102.
- [13] S. Zhou, K. Chen, J. Huang, L. Wang, M. Zhang, B. Bai, H. Liu, Q. Wang, Preparation of heterometallic CoNi-MOFs-modified BiVO₄: a steady photoanode for improved performance in photoelectrochemical water splitting, Appl. Catal. B: Environ., 2020, 266, 118513.
- [14] Y. Shi, Y. Yu, Y. Yu, Y. Huang, B. Zhao, B. Zhang, Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO₄ through the Uniform Assembly Coating of NiFe–Phenolic Networks, ACS Energy Lett., 2018, 3, 1648-1654.
- [15] T. Tian, G. Jiang, Y. Li, W. Xiang, W. Fu, Unveiling the activity and stability of BiVO₄ photoanodes with cocatalyst for water oxidation, Renew. Energ., 2022, 199, 132-139.

- [16] P. Yue, H. She, L. Zhang, B. Niu, R. Lian, J. Huang, L. Wang, Q. Wang, Superhydrophilic CoAl-LDH on BiVO₄ for enhanced photoelectrochemical water oxidation activity, Appl. Catal. B: Environ., 2021, 286, 119875.
- [17] Y. Li, Q. Wang, X. Hu, Y. Meng, H. She, L. Wang, J. Huang, G. Zhu, Constructing NiFe-metal-organic frameworks from NiFe-layered double hydroxide as a highly efficient cocatalyst for BiVO₄ photoanode PEC water splitting, Chem. Eng. J., 2022, **433**, 133592.
- [18] X. Xu, S. Jin, C. Yang, J. Pan, W. Du, J. Hu, H. Zeng, Y. Zhou, Engineering Interfaces to Steer Hole Dynamics of BiVO₄ Photoanodes for Solar Water Oxidation, Sol. RRL, 2019, 3, 1900115.
- [19] K. Fan, H. Chen, B. He, J. Yu, Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO₄, Chem. Eng. J., 2020, 392, 123744.