Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Hierarchical flower-like MoS₂/reduced graphene oxide nanohybrids supported on nickel foam as high-performance electrode material for supercapacitor applications Silki Sardana¹, Sajjan Dahiya¹, Rajesh Punia¹, A.S. Maan¹, Kuldeep Singh² and Anil Ohlan¹¹ ¹Department of Physics, Maharshi Dayanand University, Rohtak-124001, India

²CSIR-Central Electrochemical Research Institute (CECRI) Chennai Unit, CSIR Madras Complex, Taramani, Chennai- 600113, India

1. General Characterizations

Powder X-ray diffraction (XRD) spectra has been recorded on Rigaku Miniflex 600 X-Ray Diffractometer at room temperature with Cu K_a radiation ($\lambda = 1.540598$ Å) in scattering range (20) from 5° to 70° at the scan rate of 1°/min. Raman spectroscopy measurement has been performed on Laser Raman Microscope with model LabRAM HR Evolution. High-Resolution Transmission Electron Microscope (HRTEM) measurements have been performed on Talos F200S (FEI Netherland) at point resolution 0.25 nm and line resolution 0.14 nm. Field Emission Scanning Electron Microscope (FESEM) images were collected on model JEOL JSM-7610FPlus. The investigation of N₂ adsorption/desorption isotherms have been conducted using a Quantachrome Autosorb Analyzer at 77 K. The specific surface area, pore volume, and pore size distribution of samples have been evaluated using Brunauer-Emmett-Teller (BET), tplot and Barret-Joyner-Halenda (BJH) protocols, respectively. XPS has been collected on Xray photoelectron spectrometer module ESCALAB 250 XI, Thermo scientific.

2. Electrochemical characterizations

The electrochemical testing was carried out using an electrochemical workstation (VMP-300, Biologic France) at an ambient temperature with 1 M Na₂SO₄ solution using cyclic

¹ Corresponding Author Email: <u>anilohlan@gmail.com</u>; <u>anilohlan.physics@mdurohtak.ac.in</u>

voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. CV measurements have been recorded in voltage window -0.6 to 0.6 V within scan rate (0.2 to 5 mV/s). GCD analysis has been accomplished at different current densities (30 to 150 mA/g) within a voltage window of -0.6 to 0.6 V. EIS studies have been conducted at 10 mV sinusoidal signal within frequency range (10 mHz to 100 kHz). The cycle stability was tested by repeating 10000 cycles at a fixed current density of 660 mA/g.

3. Additional morphological studies

Fig. S1 shows low-magnification FESEM pictures of Ni foam and Ni foam coated MG nanohybrids. Fig. S1 (a) clearly displays porous morphology of Ni foam with average pore diameter of about 200 μ m. It can be seen from Fig. S1 (b-d) that MG nanohybrids have been successfully coated onto and within the pores of Ni foam, which facilitates fast electron transmission.

Fig. S1 FESEM images of (a) pure Ni foam, Ni foam coated (b) MG-0.5, (c) MG-1 and (d) MG-2 nanohybrid at lower magnification.

Sample	Model	R _s	Q2	n ₂	R _{ct}	Q ₃	n ₃	R _d
		(Ω)	(F.s ^(a-1))		(Ω)	(F.s ^(a-1))		(Ω)
MG-2	Model 1	2.741	0.04578	0.3139	1.466	1.411	0.9797	-
MG-1	Model 1	2.592	0.05007	0.3285	5.875	0.3287	0.86	-
MG-0.5	Model 1	4.832	0.01754	0.338	3.59	0.6298	0.8862	-
MS	Model 2	2.73	1.586e-3	0.4812	5.565	0.731	0.998	66

Table S1 Fitted parameters obtained after simulating EIS data

Table S2 Comparison of previously reported MoS_2 based supercapacitors and the findings of current work.

Electrode	Electrolyte	Specific	Specific	Specific	Cycle	Ref.
material		capacitance	Energy	Power	stability	
			(Wh/kg)	(W/kg)		
MoS ₂ /CC	1 M Na ₂ SO ₄	2236.6 mF/cm ²	-	-	86.1 % after	1
		$@ 10 \text{ mA/cm}^2$			2000 cycles	
MoS ₂	$1 \text{ M Na}_2 \text{SO}_4$	92.85 F/g @	7.25	186.5	93.8 % after	2
nanostructure		0.5 mA/cm^2			1000 cycles	
MoS ₂ nanosheet	$1 \text{ M Na}_2 \text{SO}_4$	129.2 F/g @ 1	-	-	85.1 % after	3
		A/g			500 cycles	
MoS ₂ @3DG	1 M LiPF ₆ in	688 mAh/g @	156	197	997 mAh/g	4
	EC/DMC/EM	8 A/g			after 700	
	C with 10 wt				cycles at 2 A/g	
	% FEC					
1T-MoS ₂ @rGO-	DES	169.6 F/g @	31.2	1164	91 % after	5
Н		1A/g			20000 cycles	
MoS ₂ -rGO/GCE	$1 \text{ M Na}_2 \text{SO}_4$	387.6 F/g @	-	-	No loss upto	6
		1.2 A/g			1000 cycles	
2H/1 T-	6 M KOH	275 F/g @	55	3000	97 % after	7
MoS ₂ @rGO		1 A/g			5000 cycles	
3D	$1 \text{ M Na}_2 \text{SO}_4$	340.0 F/g @ 1	-	-	90 % after	8
MoS ₂ /C@RGO		A/g			1000 cycles	
MoS ₂ /rGO	1 M KCl	850 F/g	-		95.3 % after	9
		@1A/g			10000 cycles	
MG-2	1 M Na ₂ SO ₄	2049.90 F/g	192.43	337.36	100 % after	Present

References

- C. Zhou, J. Wang, X. Yan, X. Yuan, D. Wang, Y. Zhu and X. Cheng, *Ceram. Int.*, 2019, 45, 21534–21543.
- K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, *Mater. Res. Bull.*, 2014, 50, 499–502.
- K.-J. Huang, J.-Z. Zhang, G.-W. Shi and Y.-M. Liu, *Electrochim. Acta*, 2014, 132, 397–403.
- F. Zhang, Y. Tang, H. Liu, H. Ji, C. Jiang, J. Zhang, X. Zhang and C.-S. Lee, ACS Appl.
 Mater. Interfaces, 2016, 8, 4691–4699.
- 5 C.-W. Lien, B. Vedhanarayanan, J.-H. Chen, J.-Y. Lin, H.-H. Tsai, L.-D. Shao and T. W. Lin, *Chem. Eng. J.*, 2021, 405, 126706.
- M. Saraf, K. Natarajan and S. M. Mobin, *ACS Appl. Mater. Interfaces*, 2018, 10, 16588–
 16595.
- 7 D. Vikraman, I. Rabani, S. Hussain, K. Sundaram, S. Ramesh, H. Kim, Y. Seo, J. Jung and H. Kim, *Int. J. Energy Res.*, 2021, 45, 9193–9209.
- Q. Liu, A. Gao, Y. Huang, F. Yi, S. Zhao, H. Chen, R. Zeng, Z. Sun, D. Shu and X. Song,
 J. Alloys Compd., 2019, 777, 1176–1183.
- 9 M. M. Baig, E. Pervaiz, M. Yang and I. H. Gul, Front. Mater., 2020, 7, 323.