Sulfonated covalent organic framework packed nafion membrane with

high proton conductivity for H_2/O_2 fuel cell applications

Zhichao Shao^{+,a} Xiaojing Xue^{+,b} Kexin Gao,^a Junshuai Chen,^a Lipeng Zhai,^{*a} Tianyang Wen,^b Shenglin Xiong,^c Hongwei Hou^{*b} and Liwei Mi^{*a}

^a.Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China. E-mail: zhailp@zut.edu.cn, mlwzzu@163.com.
^b.College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China. E-mail: houhongw@zzu.edu.cn.

^{c.}School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

Supporting Information

- **Fig. S1** Infrared spectrum of ZUT-COF-SO₃H.
- **Fig. S2** Solid state ¹³C NMR of ZUT-COF-SO₃H.
- Fig. S3 Thermogravimetric analysis of ZUT-COF-SO₃H.
- Fig. S4 SEM and mapping images of ZUT-COF-SO₃H.
- Fig. S5 XPS spectrum of ZUT-COF-SO₃H.
- Fig. S6 The distance between different layers in the AA stacking mode.
- Fig. S7 The photos of sample preparation and test equipment.
- Fig. S8 Impedance spectra of ZUT-COF-SO₃H at different humidity.
- Fig. S9 Activation energy of ZUT-COF-SO₃H at different humidity.
- Fig. S10 Arrhenius curve of ZUT-COF-SO₃H at different humidity.
- Fig. S11 Temperature-dependent proton conductivity of ZUT-COF-SO₃H.
- Fig. S12 SEM and EDS of ZUT-COF-SO₃H@Nafion cross section.
- Fig. S13 Infrared spectrum of ZUT-COF-SO₃H@Nafion hybrid membranes.
- Fig. S14 Thermogravimetric analysis of 10%ZUT-COF-SO₃H@Nafion hybrid membranes.
- **Fig. S15** Water contact angle of 10%-ZUT-COF-SO₃H@Nafion.
- **Fig. S16** Impedance spectra of ZUT-COF-SO₃H@Nafion hybrid membranes at 80%RH.
- Fig. S17 Activation energy of ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity.
- Fig. S18 Proton conductivity of ZUT-COF-SO₃H@Nafion hybrid membranes.
- Fig. S19 Temperature-dependent proton conductivity of hybrid membranes.
- **Fig. S20** Impedance spectra of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity.
- Fig. S21 Activation energy of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity.
- Fig. S22 Arrhenius curve of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity.
- **Fig. S23** Proton conductivity of 10%ZUT-COF-SO₃H@Nafion hybrid membranes.
- Table S1 Performance comparisons of proton conductivity with other reported materials.
- Table S2 Performance comparisons of power density with other reported materials.

Fig. S1 Infrared spectrum of ZUT-COF-SO₃H.

Fig. S2 Solid state ¹³C NMR of ZUT-COF-SO₃H.

Fig. S3 Thermogravimetric analysis of ZUT-COF-SO₃H.

Fig. S4 SEM and mapping images of ZUT-COF-SO₃H.

Fig. S5 XPS spectrum of ZUT-COF-SO₃H.

Fig. S6 The distance between different layers in the AA stacking mode.

Fig. S7 Sample preparation and test equipment: (a, b) test electrode, (c) constant temperature and humidity oven.

Fig. S8 Impedance spectra of ZUT-COF-SO $_3$ H at different humidity,(a)60%, (b)70%, (c)80%, (d)90%, (e)98%.

Fig. S9 Activation energy of ZUT-COF-SO₃H at different humidity,(a)60%, (b)70%, (c)80%, (d)90%, (e)98%.

Fig. S10 Arrhenius curve of ZUT-COF-SO₃H at different humidity.

Fig. S11 Temperature-dependent proton conductivity of ZUT-COF-SO₃H.

Fig. S12 SEM and EDS of ZUT-COF-SO₃H@Nafion cross section.

Fig. S13 Infrared spectrum of ZUT-COF-SO₃H@Nafion hybrid membranes.

Fig. S14 Thermogravimetric analysis of 10%ZUT-COF-SO₃H@Nafion hybrid membranes

Fig. S15 Water contact angle of 10%-ZUT-COF-SO $_3$ H@Nafion.

Fig. S16 Impedance spectra of ZUT-COF-SO₃H@Nafion hybrid membranes with different loading at 80%RH, (a)0%, (b) 5%, (b) 10%, (b)20%.

Fig. S17 Activation energy of ZUT-COF-SO₃H@Nafion hybrid membranes with different loading (a)0%, (b) 5%, (b) 10%, (b)20%.

Fig. S18 Proton conductivity of ZUT-COF-SO3H@Nafion hybrid membranes with different loading.

Fig. S19 Temperature-dependent proton conductivity of ZUT-COF-SO $_3$ H@Nafion hybrid membranes with different loading.

Fig. S20 Impedance spectra of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity, (a)60%, (b)70%, (c)80%, (d)90%.

Fig. S21 Activation energy of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity, (a)60%, (b)70%, (c)80%, (d)90%.

Fig. S22 Arrhenius curve of 10%ZUT-COF-SO₃H@Nafion hybrid membranes at different humidity.

Fig. S23 Proton conductivity of 10%ZUT-COF-SO₃H@Nafion hybrid membranes.

Materials	Proton	Test environment	Reference
	conductivi		
MIL-101-SO ₃ H	1.16×10 ⁻²	100%RH, 80 °C	S1
KAUST-7'	2.2×10 ⁻²	95%RH, 90°C	S2
${[Cu_{3}L_{2}(H_{2}O)_{6}]\cdot 2H_{2}O}_{n}$	4.08×10 ⁻³	100%RH, 95 °C	S3
B-PCMOF-2	1.3×10 ⁻³	90%RH, 85 °C	S4
Mg(p-BDC)(PyOH)_Cs	1.61×10 ⁻²	90%RH, 90°C	S5
${[Fe^{III}_{3}L_{2}(H_{2}O)_{6}] \bullet 3(OH)}_{n}/PVP/PVDF-10$	1.77×10 ⁻³	98%RH, 80°C	S6
N_U ₂₀₀ -2	1.65×10 ⁻¹	95%RH, 80°C	S7
N_U ₂₀₀ -10	7.9×10 ⁻²	95%RH, 80°C	S7
TpBD-(SO ₃ H) ₂ iCOFMs	6.6×10 ⁻¹	100%RH, 90°C	S8
BIY-COF	1.9×10 ⁻²	95%RH, 95 °C	S9
TFPPY-BT-COF-H ₂ PO ₃	1.12×10 ⁻³	98%RH, 60°C	S10
TFPPY-PDA-COF-H ₂ PO ₃	1.34×10 ⁻⁴	98%RH, 60°C	S10
Nafion	~1×10 ⁻¹	98%RH, 80°C	S11
BIP-COF	3.2×10 ⁻²	95%RH, 95 °C	S12
H ₃ PO ₄ @NKCOF-1	1.13×10 ⁻¹	98%RH, 80°C	S13
H ₃ PO ₄ @NKCOF-2	4.28×10 ⁻²	98%RH, 80°C	S13
H₃PO₄@NKCOF-3	1.12×10 ⁻²	98%RH, 80°C	S13
H ₃ PO ₄ @NKCOF-4	7.71×10 ⁻²	98%RH, 80°C	S13
aza-COF-1H	1.23×10 ⁻³	97%RH, 50°C	S14
aza-COF-2H	4.8×10 ⁻³	97%RH, 50°C	S14
RT-COF-1Ac	1.07×10 ⁻⁴	100%RH, 40°C	S15
PTSA@TpAzoCOFM	7.8×10 ⁻²	95%RH, 80°C	S16
ZUT-COF-SO₃H	8.65×10 ⁻²	98%RH, 80°C	This work
10%ZUT-COF-SO ₃ H@Nafion	1.338×10 ⁻¹	80%RH, 80°C	This work

Table S1 Performance comparisons of proton conductivity with other reported material.

Samples	Power Density	Pof	
	mW cm ⁻²	<i>неј.</i>	
SPEEK/2#-10	104.5	Adv. Funct. Mater. 2012, 22 , 4539–4546	
RN–PQD–5%	407	Adv. Mater. 2018, 30 , 1707516	
SPEEK/HPW@mGO-4	120.1	Ind. Eng. Chem. Res. 2021, 60 , 4460–4470	
QOPBI-15	260	J. Membr. Sci. 2020, 593 ,117435	
ОРВІ	190		
SPAES/ATP\/P-CNOs-2	752	J. Membr. Sci. 2022, 660 , 120774	
PANI-30%-OPBI	250	Journal of Power Sources, 2022, 528, 231218	
10%-ILs/NH ₂ -CNTs/OPBI	291	Journal of Power Sources, 2022, 543, 231802	
ImPOSS-Nafion	246	RSC Adv., 2013, 3 , 5438–5446	
M-3#/PA	280	Ind. Eng. Chem. Res. 2017, 56 , 10227–10234	
10%ZUT-COF-SO ₃ H@Nafion	304.056	This work	

 Table S2 Performance comparisons of power density with other reported materials.

References

[S1] S. N. Zhao, X. Z. Song, M. Zhu, X. Meng, L. L. Wu, S. Y. Song, C. Wang and H. J. Zhang, *Dalton Trans.*, 2015, **44**, 948–954.

[S2] X. Wang, Y. L. Wang, M. A. Silver, D. X. Gui, Z. L. Bai, Y. X. Wang, W. Liu, L. H. Chen, J. D. Wu,
 Z. F. Chai and S. A. Wang, *Chem. Commun.*, 2018, 54, 4429–4432.

[S3] D. A. Levenson, J. F. Zhang, P. M. J. Szell, D. L. Bryce, B. S. Gelfand, R. P. S. Huynh, N. D. Fylstra, and G. K. H. Shimizu, *Chem. Mater.*, 2020, **32**, 679–687.

[S4] H. F. Wang, Q. Wu, X. Y. Ding, Z. C. Shao, W. J. Xu, Y. J. Zhao, Q. Xie, X. R. Meng, and H. W. Hou, *Inorg. Chem.*, 2020, **59**, 8361–8368.

[S5] S. Kim, B. Joarder, J. A. Hurd, J. Zhang, K. W. Dawson, B. S. Gelfand, N. E. Wong, and G. K. H. Shimizu, *J. Am. Chem. Soc.*, 2018, **140**, 1077–108.

[S6] T. Y. Wen, Z. C. Shao, H. F. Wang, Y. J. Zhao, Y. Cui, and H. W. Hou, *Inorg. Chem.*, 2021, **60**, 18889–18898.

[S7] A. Donnadio, R. Narducci, M. Casciola, F. Marmottini, R. D'Amato, M. Jazestani, H. Chiniforoshan, and F. Costantino, *ACS Appl. Mater. Interfaces*, 2017, **9**, 42239–42246.

[S8] X. Y. Wang, B. B. Shi, H. Yang, J. Y. Guan, X. Liang, C. Y. Fan, X. D. You, Y. A. Wang, Z. Zhang, H.
 Wu, T. Cheng, R. N. Zhang and Z. Y. Jiang, *Nat Commun.*, 2022, **13**, 1020.

[S9] S. Z. Yang, C. Q. Yang, C. C. Dun, H. Y. Mao, R. S. H. Khoo, L. M. Klivansky, J. A. Reimer, J. J. Urban, J. Zhang, and Y. Liu, *J. Am. Chem. Soc.*, 2022, **144**, 9827–9835.

[S10] Z. W. Lu, C. Y. Yang, L. He, J. Hong, C. H. Huang, T. Wu, X. Wang, Z. F. Wu, X. H. Liu, Z. X. Miao,
B. R. Zeng, Y. T. Xu, C. H. Yuan, and L. Z. Dai, *J. Am. Chem. Soc.*, 2022, **144**, 9624–9633.

[S11] X. M. Wu, X. W. Wang, G. H. He, J. Benziger, J. Polym. Sci. B Polym. Phys., 2011, 49, 1437–1445.

[S12] K. C. Ranjeesh, R. Illathvalappil, S. D.Veer, J. Peter, V. C. Wakchaure, Goudappagouda, K. V. Raj, S. Kurungot, and S. S. Babu, *J. Am. Chem. Soc.*, 2019, **141**, 14950–14954.

[S13] Y. Yang, X. Y. He, P. H. Zhang, Y. H. Andaloussi, H. Zhang, Z. Y. Jiang, Y. Chen, S. Q. Ma, P. Cheng, and Z. J. Zhang, *Angew. Chem. Int. Ed.*, 2020, **59**, 3678–3684.

[S14] Z. Meng, A. Aykanat, and K. A. Mirica, Chem. Mater., 2019, 31, 819–825.

[S15] C. Montoro, D. R. S. Miguel, E. Polo, R. E. Cid, M. L. R. Gonzalez, J. A. R. Navarro, P. Ocon, and F. Zamora, *J. Am. Chem. Soc.*, 2017, **139**, 10079–10086.

[S16] H. S. Sasmal, H. B. Aiyappa, S. N. Bhange, S. Karak, A. Halder, S. Kurungot, and R. Banerjee, *Angew. Chem. Int. Ed.*, 2018, **57**, 10894–10898.