Supplementary Material:

Interfacial Encapsulation Stress Management of Micron-Sized Porous SiO Anodes for High-Energy Lithium-ion Batteries

Xiao Fang,^a Guanjia Zhu,^{*b} Shuai Yuan,^c Lingling Wang,^a Liyi Shi,^{c,d} Wei Yu,^{*a} and Haijiao Zhang^{*b}

^aSchool of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, P. R. China ^bInstitute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China ^cResearch Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, P. R. China

^dEmerging Industries Institute, Shanghai University, Zhejiang 314006, P. R. China

* Corresponding authors

E-mail: hjzhang128@shu.edu.cn, yuwei@sspu.edu.cn, zhuguanjia@shu.edu.cn

Fig. S1 SEM images of (a) SiO, (b) Ag-deposited SiO.

Fig. S2 SEM image of p-SiO.

Fig. S3 TEM image (a) and (b) SEM image and corresponding elemental mapping of p-SiO@C.

Fig. S4 SEM image of p-SiO@C@rGO.

Fig. S5 XRD patterns of p-SiO@C and p-SiO@rGO.

Fig. S6 FT-IR spectra of p-SiO@C@rGO, p-SiO@C, and p-SiO@rGO.

Fig. S7 (a) CV curves of p-SiO at various scan rates of 0.1-1.0 mV s⁻¹, (b) Relationship between the logarithm peak currents and logarithm sweep rates, and (c) Capacitive and diffusion-controlled contribution to charge storage at 1.0 mV s⁻¹. (d) The percentages of capacitive and diffusion-controlled capacities at different scan rates of p-SiO@C@rGO, p-SiO@C, p-SiO@rGO and p-SiO electrodes.

Fig. S8 Electrochemical impedance spectra of the p-SiO@rGO electrode.

Fig. S9 TEM images of (a) p-SiO@rGO, (b) p-SiO@C, (c) p-SiO@C@rGO and (d) p-SiO electrodes after cycling. The surface cracks of the particles are marked with red dashed circles.

	Charge specific capacity /mAh g ⁻¹	Discharge specific capacity /mAh g ⁻¹	C ratio / %	Theoretical specific capacity /mAh g ⁻¹	Initial lithiation extent /%
p-SiO	818.55	1470.7	0	2680.0	54.9
p-SiO@C	1635.9	2314.6	7.1	2516.1	92.0
p-SiO@rGO	1757.0	2299.9	13.9	2359.2	97.5
p-SiO@C@rGO	1298.8	2086.5	20.2	2213.8	94.2

Table S1 Initial capacity information of four samples.

The reversible ratio capacity was calculated as follows:

Taking p-SiO@rGO as an example: Based on the ratio (13.9 %) of C content in p-SiO@rGO and the theoretical capacity (372 mAh g⁻¹), it is known that 86.1 % of p-SiO with a theoretical capacity of 2680 mAh g⁻¹. The theoretical capacity of p-SiO@rGO can be calculated as 2359.2 mAh g⁻¹ (13.9 % × 372 mAh g⁻¹ + 86.1 % × 2690 mAh g⁻¹). And then, the reversibility of p-SiO@rGO was calculated to be 97.5% using the following equation.

 $\label{eq:Initial lithiation extent} Initial lithiation extent = \frac{Discharge specific capacity}{Theoretical specific capacity}\,\%$