Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

Graphitic carbon nitride decorated with C-N compounds broken by s-triazine unit as

homojunction for photocatalytic H<sub>2</sub> evolution

Yixuan Lva, Dandan Maa, Kunli Songa, Siman Maoa, Zhetong Liua, Dan Heb, Xuewen Zhaoa,

Tianhao Yao<sup>a</sup>, Jian-Wen Shi\*a

<sup>a</sup> State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for

Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049,

China

<sup>b</sup> Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China

\* Corresponding author

E-Mail: jianwen.shi@mail.xjtu.edu.cn (J.-W. Shi)



Fig. S1. The digital photos of dialysis process.



Fig. S2. TEM images of BST-CN



Fig. S3. TEM and EDS mapping images of g- $C_3N_4$  nanosheets



**Fig. S4.** Corresponding height analysis of CN/BST-0.05, g-C<sub>3</sub>N<sub>4</sub> nanosheets (CN) and BST-CN.



Fig. S5. Raman spectra of CN, BST and CN/BST-0.05.



Fig. S6. Corresponding Taus plots of  $g-C_3N_4$ , BST-CN and CN/BST-0.05.



Fig. S7. PHE performance of supplementary reference samples.



Fig. S8. PHE performance of CN/BST-0.05 catalyst in 4 cycles of tests.



Fig. S9. XRD pattern of CN/BST-0.05 catalyst before and after 4 cycles of tests.



**Fig. S10.** Mott-Schottky plots under different frequency of (a-c) g-C<sub>3</sub>N<sub>4</sub> nanosheets (CN), (d-f) CN/BST-0.05 and (g-i) BST-CN.

| Sample      | Pore Volume     | Surface Area Pore Width |        |
|-------------|-----------------|-------------------------|--------|
|             | $(cm^3 g^{-1})$ | $(cm^2 g^{-1})$         | (nm)   |
| CN          | 0.569           | 231.771                 | 27.043 |
| CN/BST-0.05 | 0.342           | 136.162                 | 10.321 |
| BST         | 1.8291          | 50.9                    | 7.4410 |

Table S1. Summary of BET obtained parameters of g-C<sub>3</sub>N<sub>4</sub>, CN/BST-0.05 and

| BST series samples. |  |
|---------------------|--|
|---------------------|--|

| Sample                                 | Reaction condition                  | HER ( $\mu$ mol g <sup>-1</sup> h <sup>-1</sup> ) | Ref.      |
|----------------------------------------|-------------------------------------|---------------------------------------------------|-----------|
| CN/BST-0.05                            | Pt ( $\lambda \ge 320 \text{ nm}$ ) | 12470                                             | This work |
| CN/BST-0.05                            | Pt (λ≥420 nm)                       | 5601                                              | This work |
| IR/CN                                  | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 3882                                              | [S1]      |
| 30ZIS-S/CN                             | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 3215                                              | [S2]      |
| g-C3N4/Ni-P-3%                         | No Pt                               | 1051                                              | [83]      |
| CN <sub>700-210</sub>                  | $Pt(\lambda \ge 420 \text{ nm})$    | 830                                               | [S4]      |
| A-CGCN                                 | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 1179                                              | [85]      |
| tri-/tri-s-tri-                        | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 1600                                              | [86]      |
| C <sub>3</sub> N <sub>4</sub> -90      |                                     |                                                   |           |
| g- C <sub>3</sub> N <sub>4</sub> -Co2P | (λ≥ 420 nm)                         | 11120                                             | [S7]      |
| DCN-200                                | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 3980                                              | [S8]      |
| CN-TH <sub>3/3</sub>                   | Pt ( $\lambda \ge 420 \text{ nm}$ ) | 3806.5                                            | [S9]      |

**Table S2.** The comparison of our results with those reported photocatalyst performance.

## Reference

[S1] W. Yu, X. Shan and Z. Zhao, Appl. Catal. B: Environ., 2020, 269, 118778.

[S2] Y. Qin, Hong Li, J. Lu, Y. Feng, F. Meng, C. Ma, Y. Yan and M. Meng, *Appl. Catal. B: Environ.*, 2020, 277, 119254.

- [S3] K. Qi, Y. Xie, R. Wang, S. Liu and Z. Zhao. Appl. Surf. Sci., 2019, 466, 847-853.
- [S4] L. Cui, X. Hou, H. Du and Y. Yuan, ACS Appl. Mater. Inter., 2013, 23, 5, 12533-12540.
- [S5] Z. Liu, G. Wang, H.-S. Chen and P. Yang, Chem. Commun., 2018, 54, 4720-4723.
- [S6] Z. X. Zeng, H. T. Yu, X. Quan, S. Chen and S. S. Zhang, *Appl. Catal. B-Environ.*, 2018, 227, 153-160.

[S7] R. C. Shen, J. Xie, H. D. Zhang, A. P. Zhang, X. B. Chen and X. Li, ACS Sustain. Chem. Eng., 2018, 6, 816-826.

[S8] G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako and J. Ye, *Adv. Funct. Mater.*, 2016, 26, 6822-6829.

[S9] Z. Fang, Y. Bai, L. Li, D. Li, Y. Huang, R. Chen, W. Fan and W. Shi, *Nano Energ.*, 2020, 75, 104865.