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Figure S1. XPS survey spectrum of Bi2S3, Bi2O2SO4, and metal Bi samples. 

 

 

 

 

 

 

 

Figure S2. (a-b) The TEM images of Bi2S3 precursor. 

 

 

 

 

 

 

 

 



 

Figure S3. (a-b) The TEM images of Bi2O2SO4. 

 

 

 

 

 

 

 

 

 

 

Figure S4. (a-b) The TEM images of metal Bi. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S5. Constant potential electrolysis of (a) Bi2S3, (b) Bi2O2SO4 and (c) Bi at each 

applied potential in CO2 saturated 0.5 M KHCO3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6. Stability test of the Bi catalyst at -0.9 V vs. RHE. 

 

 

Figure S7. The XRD patterns of the Bi2O2SO4 samples were synthesized at different 

reaction temperatures. 

 

 

 



 

Figure S8. (a) LSV curves of the Bi2O2SO4 samples that were synthesized at different 

reaction temperatures. (b) Corresponding FEs of these samples at -0.8 V. 

 

 

 

 

Figure S9. (a) LSV curves of the surface treated Bi sample at different temperatures in 

air. (b) Corresponding FEs of these samples at -1.0 V. 

 

 

 



 

Figure S10. The CV curves of (a) Bi2S3, (b) Bi2O2SO4, and (c) Bi samples in 0.5 M 

KHCO3 at scan rates of 20, 40, 60, 80,100, 200 mV s-1, respectively. 

 

 

 

 

 

 

 

 



 

Figure S11. 1H NMR spectra of Bi2O2SO4 catalyst after the electrocatalytic CO2 

reduction in a flow cell. 

 

 

 

Figure S12. The partial current density of formate for Bi2O2SO4 catalyst at different 

applied potentials in a flow cell. 

 

 

 



 

 

 

Figure S13. The XRD pattern of Bi2S3 catalyst on carbon paper before and after the 

electrocatalytic CO2 reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S14. The XPS survey of Bi2O2SO4 catalyst after the electrocatalytic CO2 

reduction. 

 

 

 

 

Figure S15. The NMR calibration curve of DMSO. 

 

 

 

 



Table S1. Relevant parameters of Bi and Bi2O2SO4 samples at -0.9 V vs. RHE. 

Sample 
jformate at -0.9 V vs. RHE 

(mA cm-2) 

Cdl 

 (mF cm-2) 

jformate' at -0.9 V vs. RHE per Cdl 

 (mA cm-2) 

Bi 8.53 0.48 17.77 

Bi2O2SO4 12.56 0.46 27.3 

 

Table S2. Comparison of Bi2O2SO4 with recently reported Bi-based electrocatalysts in 

H-type cell. 

Catalyst Electrolyte 

Maximum FEformate with 

the applied potential (vs. 

RHE) 

Potential ranges 

(mV) 

for FEformate > 80% 

Ref 

Bi2O2SO4 reduced Bi 0.5 M KHCO3 97% at -0.9 V 

 

 93% at -0.95 V 

 

95.3% at -1.14V 

 

95% at -0.9 V 

 

91.3% at -1.0 V 

 

 96.1% at -0.669 V 

 

97% at -1.0 V 

 

95.9% at -0.77 V 

 

92% at -0.9 V 

 

84.0% at -0.75 V 

 

86.0% at -1.1 V 

400 

 

200 

 

400 

 

400 

 

600 

 

500 

 

600 

 

300 

 

400 

 

200 

 

200 

This 

work 

OD-BiNSs 0.5 M KHCO3 [1] 

 

Pits-Bi NS 

 

0.1 M KHCO3 

 

[2] 

 

2D Bi NSs 

 

0.5 M KHCO3 

 

[3] 

 

Bi nanosheets 

 

0.5 M KHCO3 

 

[4] 

 

Bi–BTB 

 

0.5 M KHCO3 

 

[5] 

 

Bi Nanotubes 

 

0.5 M KHCO3 

 

[6] 

 

Mesoporous Bi NSs 

 

0.5 M KHCO3 

 

[7] 

 

Bi nanostructure 

 

0.5 M KHCO3 

 

[8] 

 

SD-Bi 

 

0.5 M NaHCO3 

 

[9] 

 

2D Bi NSs 

 

0.1 M KHCO3 

 

[10] 

 

 

 



Table S3. Comparison of Bi2O2SO4 with recently reported electrocatalysts in a flow 

cell. 

Catalyst Electrolyte 

Maximum FEformate 

with the applied 

potential (vs. RHE) 

Potential ranges (mV) 

for FEformate > 90% Ref 

Bi2O2SO4 reduced Bi 1.0 M KOH  97.2% at -1.2V 

 

    94% at - 0.7 V 

 

 95% at -0.7 V 

 

 100% at -0.7 V 

 

91% at -0.9V 

 

 94.6 % at -0.51 V 

 

 91% at -1.29 V 

 

 95% at -1.02 V 

 

>95% 

 

 94% at -0.98 V 

 

 99.3% at -1.18 V 

700 

 

500 

 

700 

 

100 

 

100 

 

200 

 

100 

 

350 

 

600 

 

550 

 

300 

This 

work 

InS Nanorods 1.0 M KOH [11] 

 

Bi2O3@C-800 

 

1.0 M KOH 

 

[12] 

 

Bi-300 

 

1.0 M KOH 

 

[13] 

 

InN nanosheet 

 

1.0 M KOH 

 

[14] 

 

Bi-SnOx 

 

1.0 M KOH 

 

[15] 

 

SnO2-Bi2O3 

 

1.0 M KOH 

 

[16] 

 

Bi@Sn NPs 

 

 

2.0 M KHCO3 

 

[17] 

Bi NRs 1.0 M KOH 

 

[18] 

In-Sn alloy 1.0 M KOH [19] 

 

ZnIn2S4 

 

1.0 M KHCO3 

 

[20] 
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