Supporting Information

Topological Chemical Transition Strategy of Bismuth-based Materials for High-efficient Electrocatalytic Carbon Dioxide Conversion to Formate

Runze Ye, Yun Tong,* Dongmei Feng and Pengzuo Chen*

Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha High Education Zone, Hangzhou 310018, (P. R. China)

Correspondence and requests for materials should be addressed to Y. Tong (E-mail: tongyun@mail.ustc.edu.cn; pzchen@zstu.edu.cn)

Table of contents

Figure S1. XPS survey spectrum of Bi ₂ S ₃ , Bi ₂ O ₂ SO ₄ , and metal Bi samples3
Figure S2. (a-b) The TEM images of Bi ₂ S ₃ precursor
Figure S3. (a-b) The TEM images of Bi ₂ O ₂ SO ₄
Figure S4. (a-b) The TEM images of metal Bi4
Figure S5. Constant potential electrolysis of (a) Bi_2S_3 , (b) $Bi_2O_2SO_4$ and (c) Bi at each applied potential in CO ₂ saturated 0.5 M KHCO ₃
Figure S6. Stability test of the Bi catalyst at -0.9 V vs. RHE
Figure S7. The XRD patterns of the Bi ₂ O ₂ SO ₄ samples were synthesized at different reaction temperatures
Figure S8. (a) LSV curves of the Bi ₂ O ₂ SO ₄ samples that were synthesized at different reaction temperatures. (b) Corresponding FEs of these samples at -0.8 V. 7
Figure S9. (a) LSV curves of the surface treated Bi sample at different temperatures in air. (b) Corresponding FEs of these samples at -1.0 V
Figure S10. The CV curves of (a) Bi_2S_3 , (b) $Bi_2O_2SO_4$, and (c) Bi samples in 0.5 M KHCO ₃ at scan rates of 20, 40, 60, 80,100, 200 mV s ⁻¹ , respectively
Figure S11. ¹ H NMR spectra of Bi ₂ O ₂ SO ₄ catalyst after the electrocatalytic CO ₂ reduction in a flow cell9
Figure S12. The partial current density of formate for Bi ₂ O ₂ SO ₄ catalyst at different applied potentials in a flow cell
Figure S13. The XRD pattern of Bi ₂ S ₃ catalyst on carbon paper before and after the electrocatalytic CO ₂ reduction
Figure S14. The XPS survey of Bi ₂ O ₂ SO ₄ catalyst after the electrocatalytic CO ₂ reduction
Figure S15. The NMR calibration curve of DMSO
Table S1. Relevant parameters of Bi and Bi ₂ O ₂ SO ₄ samples at -0.9 V vs. RHE12
Table S2. Comparison of Bi ₂ O ₂ SO ₄ with recently reported Bi-based electrocatalysts in H-type cell. 12
Table S3. Comparison of Bi ₂ O ₂ SO ₄ with recently reported electrocatalysts in a flow cell
References:

Figure S1. XPS survey spectrum of Bi₂S₃, Bi₂O₂SO₄, and metal Bi samples.

Figure S2. (a-b) The TEM images of Bi_2S_3 precursor.

Figure S3. (a-b) The TEM images of Bi₂O₂SO₄.

Figure S4. (a-b) The TEM images of metal Bi.

Figure S5. Constant potential electrolysis of (a) Bi_2S_3 , (b) $Bi_2O_2SO_4$ and (c) Bi at each applied potential in CO₂ saturated 0.5 M KHCO₃.

Figure S6. Stability test of the Bi catalyst at -0.9 V vs. RHE.

Figure S7. The XRD patterns of the $Bi_2O_2SO_4$ samples were synthesized at different reaction temperatures.

Figure S8. (a) LSV curves of the $Bi_2O_2SO_4$ samples that were synthesized at different reaction temperatures. (b) Corresponding FEs of these samples at -0.8 V.

Figure S9. (a) LSV curves of the surface treated Bi sample at different temperatures in air. (b) Corresponding FEs of these samples at -1.0 V.

Figure S10. The CV curves of (a) Bi_2S_3 , (b) $Bi_2O_2SO_4$, and (c) Bi samples in 0.5 M KHCO₃ at scan rates of 20, 40, 60, 80,100, 200 mV s⁻¹, respectively.

Figure S11. ¹H NMR spectra of $Bi_2O_2SO_4$ catalyst after the electrocatalytic CO_2 reduction in a flow cell.

Figure S12. The partial current density of formate for $Bi_2O_2SO_4$ catalyst at different applied potentials in a flow cell.

Figure S13. The XRD pattern of Bi_2S_3 catalyst on carbon paper before and after the electrocatalytic CO_2 reduction.

Figure S14. The XPS survey of $Bi_2O_2SO_4$ catalyst after the electrocatalytic CO_2 reduction.

Figure S15. The NMR calibration curve of DMSO.

Sample	j _{formate} at -0.9 V vs. RHE (mA cm ⁻²)	C _{dl} (mF cm ⁻²)	j _{formate} ' at -0.9 V vs. RHE per C _{dl} (mA cm ⁻²)
Bi	8.53	0.48	17.77
Bi ₂ O ₂ SO ₄	12.56	0.46	27.3

Table S1. Relevant parameters of Bi and Bi₂O₂SO₄ samples at -0.9 V vs. RHE.

Table S2. Comparison of $Bi_2O_2SO_4$ with recently reported Bi-based electrocatalysts in H-type cell.

		Maximum FE _{formate} with	Potential ranges	
Catalyst	Electrolyte	the applied potential (vs.	(mV)	Ref
		RHE)	for FE _{formate} > 80%	
Bi ₂ O ₂ SO ₄ reduced Bi	0.5 M KHCO3	97% at -0.9 V	400	This
				work
OD-BiNSs	0.5 M KHCO3	93% at -0.95 V	200	[1]
Pits-Bi NS	0.1 M KHCO3	95.3% at -1.14V	400	[2]
2D B; NSc	0.5 M KHCO	05% of 00V	400	[3]
20 DI 1135	0.5 WI KIICO3	95 /0 at -0.7 V	400	[3]
Bi nanosheets	0.5 M KHCO3	91.3% at -1.0 V	600	[4]
Bi–BTB	0.5 M KHCO ₃	96.1% at -0.669 V	500	[5]
Bi Nanotubes	0.5 M KHCO3	97% at -1.0 V	600	[6]
Mesoporous Bi NSs	0.5 M KHCO3	95.9% at -0.77 V	300	[7]
Bi nanostructure	0.5 M KHCO3	92% at -0.9 V	400	[8]
SD-Bi	0.5 M NaHCO ₃	84.0% at -0.75 V	200	[9]
AD D' NG			200	[10]
2D BI NSS	0.1 M KHCO3	86.0% at -1.1 V	200	[10]

		Maximum FE _{formate}	Potential ranges (mV)	
Catalyst	Electrolyte	with the applied	for FE _{formate} > 90%	Ref
		potential (vs. RHE)		
Bi ₂ O ₂ SO ₄ reduced Bi	1.0 M KOH	97.2% at -1.2V	700	This
				work
InS Nanorods	1.0 M KOH	94% at - 0.7 V	500	[11]
Bi ₂ O ₃ @C-800	1.0 M KOH	95% at -0.7 V	700	[12]
Bi-300	1.0 M KOH	100% at -0.7 V	100	[13]
InN nanosheet	1.0 M KOH	91% at -0.9V	100	[14]
Bi-SnO _x	1.0 M KOH	94.6 % at -0.51 V	200	[15]
SnO ₂ -Bi ₂ O ₃	1.0 M KOH	91% at -1.29 V	100	[16]
D'OG ND			250	[48]
Bi@Sn NPs	2.0 M KHCO ₃	95% at -1.02 V	350	[17]
D: NDa		> 050/	600	[10]
DI INKS	1.0 M KOH	>95%	000	[10]
In-Sn allov	1.0 M KOH	94% at -0 98 V	550	[10]
) - /0 at -0.70 ¥	550	[17]
ZnIn2S4	1.0 M KHCO3	99.3% at -1.18 V	300	[20]
				L = ~ 1

Table S3. Comparison of $Bi_2O_2SO_4$ with recently reported electrocatalysts in a flow cell.

References:

- Lee J, Liu H, Chen Y, et al. Bismuth Nanosheets Derived by In Situ Morphology Transformation of Bismuth Oxides for Selective Electrochemical CO₂ Reduction to Formate. *ACS Appl. Mater. Interfaces*, **2022**, *14*(*12*): *14210-14217*.
- [2] Yuan Y, Wang Q, Qiao Y, et al. In Situ Structural Reconstruction to Generate the Active Sites for CO₂ Electroreduction on Bismuth Ultrathin Nanosheets. *Adv. Mater*, 2022, 12(29): 2200970.
- [3] Liu P, Liu H, Zhang S, et al. A general strategy for obtaining BiO_X nanoplates derived Bi nanosheets as efficient CO₂ reduction catalysts by enhancing CO₂⁻ adsorption and electron transfer. J. Colloid Interface Sci., 2021, 602: 740-747.
- [4] Wang D, Wang Y, Chang K, et al. Residual iodine on in-situ transformed bismuth nanosheets induced activity difference in CO₂ electroreduction. J. CO₂ Util., 2022, 55: 101802.
- [5] Yuan W W, Wu J X, Zhang X D, et al. In situ transformation of bismuth metal– organic frameworks for efficient selective electroreduction of CO₂ to formate. *J. Mater. Chem. A*, **2020**, *8*(46): 24486-24492.
- [6] Fan K, Jia Y, Ji Y, et al. Curved surface boosts electrochemical CO₂ reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal, 2019, 10(1): 358-364.
- [7] Wu D, Liu J, Liang Y, et al. Electrochemical Transformation of Facet-Controlled BiOI into Mesoporous Bismuth Nanosheets for Selective Electrocatalytic Reduction of CO₂ to Formic Acid. *ChemSusChem*, 2019, 12(20): 4700-4707.
- [8] Lu P, Gao D, He H, et al. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO₂ to formate. *Nanoscale*, 2019, 11(16): 7805-7812.
- [9] Zhang Y, Li F, Zhang X, et al. Electrochemical reduction of CO₂ on defect-rich Bi derived from Bi₂S₃ with enhanced formate selectivity. *J. Mater. Chem. A*, 2018, 6(11): 4714-4720.
- [10] Zhang W, Hu Y, Ma L, et al. Liquid-phase exfoliated ultrathin Bi nanosheets:

uncovering the origins of enhanced electrocatalytic CO₂ reduction on twodimensional metal nanostructure. *Nano Energy*, **2018**, *53*: 808-816.

- [11] Zhang Y, Lan J, Xie F, et al. Aligned InS Nanorods for Efficient Electrocatalytic Carbon Dioxide Reduction. ACS Appl. Mater. Interfaces, 2022, 14(22), 25257-25266.
- [12] Yi L, Chen J, Shao P, et al. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO₂ to formate. *Angew. Chem. Int. Ed.*, **2020**, *59*(45): 20112-20119.
- [13] Deng P, Yang F, Wang Z, et al. Metal–Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO₂ Electroreduction to Formate. *Angew. Chem. Int. Ed.*, 2020, 132(27): 10899 -10905.
- [14] Zhang A, Liang Y, Li H, et al. In-situ surface reconstruction of InN nanosheets for efficient CO₂ electroreduction into formate. *Nano Lett.*, **2020**, 20(11): 8229-8235.
- [15] Yang Q, Wu Q, Liu Y, et al. Novel Bi-Doped Amorphous SnO_x Nanoshells for Efficient Electrochemical CO₂ Reduction into Formate at Low Overpotentials. *Adv. Mater*, **2020**, *32*(*36*): 2002822.
- [16] Wang X, Wang W, Zhang J, et al. Carbon sustained SnO₂-Bi₂O₃ hollow nanofibers as Janus catalyst for high-efficiency CO₂ electroreduction. *Chem. Eng. J.*, 2021, 426: 131867.
- [17] Xing Y, Kong X, Guo X, et al. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO₂ into formic acid. *Adv. Sci.*, 2020, 7(22): 1902989.
- [18] Li Y, Chen J, Chen S, et al. In Situ Confined Growth of Bismuth Nanoribbons with Active and Robust Edge Sites for Boosted CO₂ Electroreduction. ACS Energy Lett., 2022, 7(4): 1454-1461.
- [19] Wang J, Ning S, Luo M, et al. In-Sn alloy core-shell nanoparticles: In-doped SnO_x shell enables high stability and activity towards selective formate production from electrochemical reduction of CO₂. *Appl. Catal. B*, **2021**, *288:119979*.

[20] Chi L P, Niu Z Z, Zhang X L, et al. Stabilizing indium sulfide for CO₂ electroreduction to formate at high rate by zinc incorporation. *Nat. Commun*, 2021, 12(1): 1-9.