Electronic Supplementary Information

Experimental Section

Materials: Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O), iron (III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O), sodium sulfide nonahydrate (Na₂S·9H₂O), ammonium fluoride (NH₄F), urea, ruthenium oxide (RuO₂), Pt/C (20 wt% Pt on Vulcan XC-72R), Nafion (5 wt%), hydrochloric acid (HCl), ethylalcohol (C₂H₅OH), sodium chloride (NaCl), potassium hydroxide (KOH), and sodium carbonate (Na₂CO₃) were obtained from Aladdin Industrial Co. Natural seawater was collected from Weihai, Shandong, China, and most of the magnesium and calcium salts were removed by first adding 3.4 g Na₂CO₃ to 500 mL of natural seawater before use. All the reagents were used as received without further purification. Ni foam (NF) was obtained from Shenzhen Green and Creative Environmental Science and Technology Co. Ltd. The water used throughout all experiments was purified through a Millipore system.

Preparation of NiFe-LDH/NF and NiFeS/NF: Firstly, a well-cut small piece of NF (2.0 × 3.0 cm²) was sonicated in HCl, ethanol, and distilled water, respectively. The pre-treated NF was put into a solution containing 40 mL deionized water, 0.582 g Ni(NO₃)₂·6H₂O, 0.404 g Fe(NO₃)₃·9H₂O, 0.148 g NH₄F, and 0.6 g urea in a Teflon-lined autoclave and heated at 120 °C for 6 h to obtain NiFe-LDH/NF. It was washed with deionized water and ethanol several times, and dried at 60 °C. Then the synthetic sample was immersed in 0.2 M Na₂S·9H₂O solution in a Teflon-lined autoclave for the hydrothermal treatment (100 °C, 8 h). After the autoclave was cooled down naturally to room temperature, the sample was moved out, washed with deionized water and ethanol several times and dried at 60 °C for 30 min. Finally, NiFeS/NF was obtained.

Preparation of RuO₂ or Pt/C on NF: 5 mg RuO₂ (or 20% Pt/C) was added in a solution containing 30 μ L of Nafion, 485 μ L of ethanol, and 485 μ L of deionized water with the aid of ultrasonication (30 min) to form a homogeneous ink (5 mg mL⁻¹). 280 μ L of catalyst ink was dropped onto a piece of cleaned NF (1.0 × 0.5 cm²)

with a loading mass of 1.4 mg.

Characterization: XRD data was acquired from a LabX XRD-6100 X-ray diffractometer with a Cu Kα radiation (40 kV, 30 mA) of wavelength of 0.154 nm (SHIMADZU, Japan). SEM images were collected on a GeminiSEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. TEM images were acquired on a HITACHI H-8100 electron microscope (Hitachi, Tokyo, Japan) operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. In-situ Raman spectroscopy was recorded on the Horiba-Xplora Plus confocal microscope with 532 nm laser in ~20 mL of 0.1 M KOH + Seawater.

Electrochemical measurements: Electrochemical OER and HER experiments were performed with the CHI 760E electrochemical workstation, using the prepared samples (1 × 0.5 cm²), carbon rod, and Hg/HgO as the working electrode, counter electrode, and reference electrode, respectively. The water-splitting performance of the electrolyzers were tested in a two-electrode system, where OER electrodes are as the anode and HER electrodes as the cathode. Three different electrolytes, including 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH + Seawater, were used, and the pH was about 14.0. All measured potentials were referenced to that of reversible hydrogen electrode (RHE) ($E_{RHE} = E_{Hg/HgO} + 0.059 \times pH + 0.098 \text{ V}$). Electrochemical impedance spectroscopy (EIS) measurements were performed at open circuit potentials between 110 to 0.01 Hz with an amplitude of 5 mV. The catalytic activity of catalysts was determined by linear sweep voltammetry (LSV) curves with a scan rate of 5 mV s⁻¹. The double-layer capacitance (C_{dl}) values were obtained via cyclic voltammetry (CV) curves with the scan rates of 10-100 mV s⁻¹. All data (except for Fig. S5) have been reported with iR compensation. The iR-compensated potential was obtained after the correction of solution resistance measured following the equation: $E_{corr} = E - iR$, where E is the original potential, R is the solution resistance, i is the corresponding current, and E_{corr} is the iR-compensated potential.

DFT calculation: First-principles calculations with spin-polarized were carried out

based on density functional theory (DFT) implemented in the VASP package,¹ and the interaction between valence electrons and ionic core were expanded using the projector augmented wave (PAW)² approach with a cutoff of 400 eV. Perdew-Burke-Ernzerhof functional (PBE) with semi-empirical corrections of DFT-D3 was adopted to describe exchange-correlation functional effect³ based on general gradient approximation (GGA). FeNi₂S₄ (311) Slab model was constructed with a vacuum layer of 10 Å in the z direction to avoid the interaction between layers. The force convergence thresholds are 0.02 eV/Å and the total energy less than 1E⁻⁵ eV, respectively. The theoretical calculation results were processing and analyzed by VASPKIT software.⁴

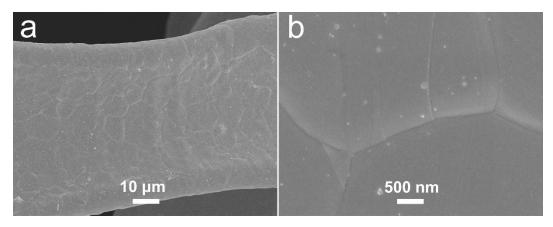


Fig. S1. (a) Low- and (b) high-magnification SEM images of bare NF.

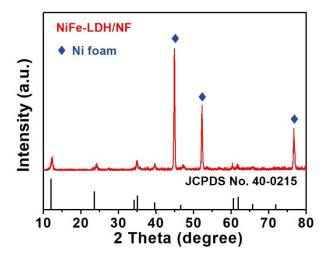
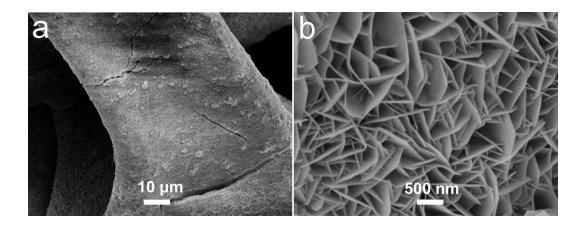
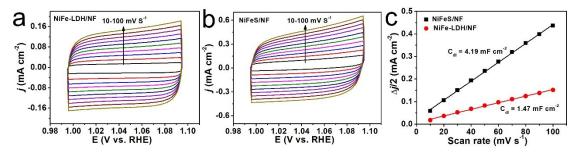
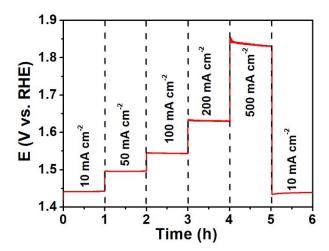
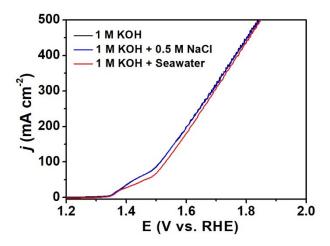
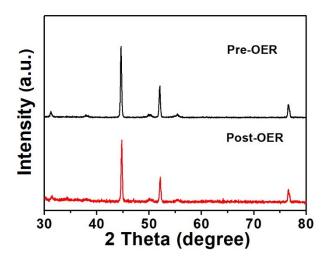
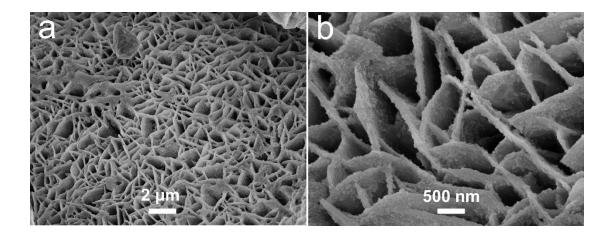


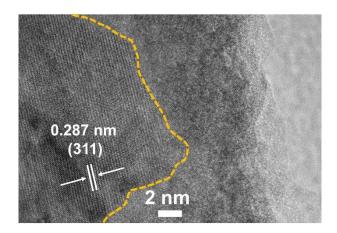
Fig. S2. XRD pattern of NiFe-LDH/NF.

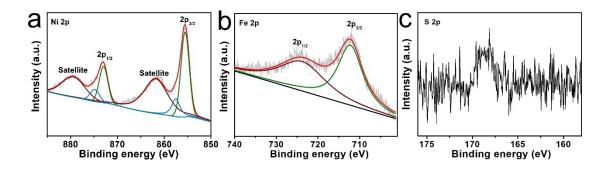





Fig. \$3. (a) Low- and (b) high-magnification SEM images of NiFe-LDH/NF.


Fig. S4. CV curves of (a) NiFe-LDH/NF and (b) NiFeS/NF. (c) Double-layer capacitance (C_{dl}) plots of NiFe-LDH/NF and NiFeS/NF samples.


Fig. S5. Multi-current process of NiFeS/NF. The current density started at 10 mA cm^{-2} and ended at 10 mA cm^{-2} without iR correction.


Fig. S6. LSV curves of NiFeS/NF without iR compensation for OER in different electrolytes.


Fig. S7. XRD patterns for pre- and post-OER NiFeS/NF tested in 1 M KOH + Seawater electrolyte.

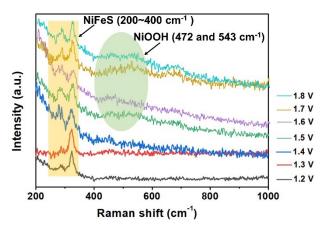
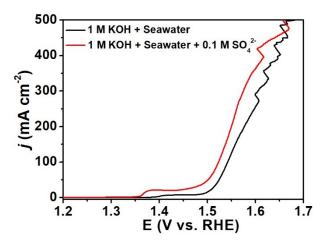
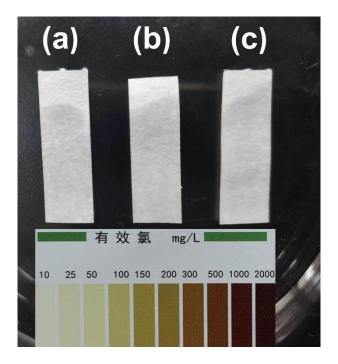
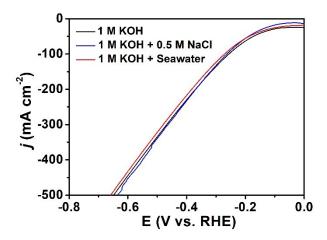
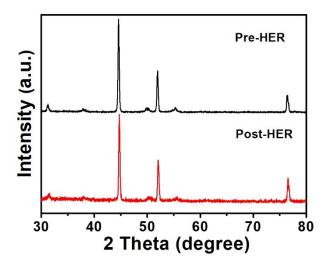

Fig. S8. (a) Low- and (b) high-magnification SEM images of post-OER NiFeS/NF tested in 1 M KOH + Seawater electrolyte.

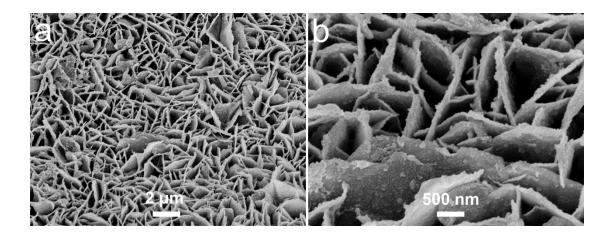
Fig. S9. HRTEM image of NiFeS after post-OER tested in 1 M KOH + Seawater electrolyte.

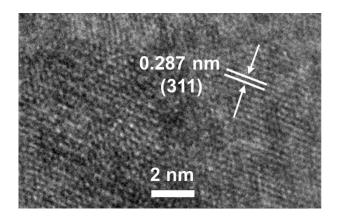
Fig. S10. High-resolution XPS spectra for post-OER NiFeS tested in 1 M KOH + Seawater electrolyte in the (a) Ni 2p, (b) Fe 2p, and (c) S 2s regions.

Fig. S11. In-situ potential-dependent Raman spectra of NiFeS electrode in alkaline seawater.


Fig. S12. LSV curves of NiFeS/NF recorded in 1 M KOH + Seawater without and with 0.1 M ${\rm SO_4^{2-}}$ for OER.


Fig. S13. Photograph of (a) Colorimetric paper tested in 1 M KOH + Seawater before OER stability experiment and colorimetric paper tested in 1 M KOH + Seawater after OER stability experiments at current densities of (b) 100 and (c) 500 mA cm⁻².


Fig. S14. LSV curves of NiFeS/NF without iR compensation for HER in different electrolytes.

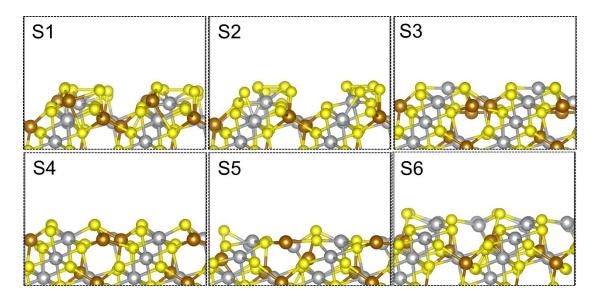

Fig. S15. XRD patterns for pre- and post-HER NiFeS/NF tested in 1 M KOH + Seawater electrolyte.

Fig. S16. (a) Low- and (b) high-magnification SEM images of post-HER NiFeS/NF tested in 1 M KOH + Seawater electrolyte.

Fig. S17. HRTEM image of post-HER NiFeS tested in 1 M KOH + Seawater electrolyte.

Fig. S18. FeNi₂S₄ (311) surface with different terminated face; gray, brown and yellow spheres denote the Ni, Fe, and S.

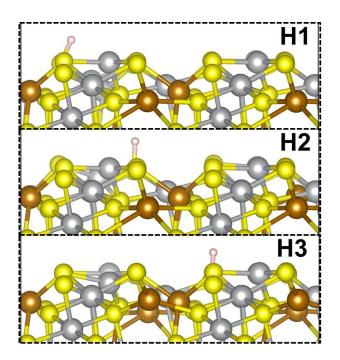


Fig. S19. Atomic configurations; gray, brown and yellow spheres denote the Ni, Fe, and S.

Table S1. The EIS parameters of the samples.

Catalyst	$R_{ m ct}/\Omega$	$R_{\scriptscriptstyle S}\!/\Omega$
NiFeS/NF	4.36	1.54
NiFe-LDH/NF	16.70	1.61

Table S2. Comparison of OER performances for NiFeS/NF with other reported OER electrocatalysts.

Electrocatalyst	Electrolyte	Overpotential @ 100 (mV @ mA cm ⁻²)	Reference	
NiFeS/NF	1 M KOH	215	This Work	
	1 M KOH + Seawater	226		
CoP _x @FeOOH/NF	1 M KOH	254	Appl. Catal., B, 2021, 294,	
	1 M KOH + Seawater	283	120256	
S-(Ni,Fe)OOH/NF	1 M KOH	281	Energy Environ. Sci., 2020, 13,	
	1 M KOH + Seawater	300	3439–3446	
M. C.D NE	1 M KOH	420	Mater. Today Nano, 2022, 18,	
Mo-CoP _x /NF	1 M KOH + Seawater	\	100216	
Ni ₂ P-Fe ₂ P/NF	1 M KOH	261	Adv. Funct. Mater., 2021, 31,	
	1 M KOH + Seawater	305	2006484	
1D C @C C O/D1	1 M KOH	380	Small, 2021, 17 , 2103826	
1D-Cu@Co-CoO/Rh	1 M KOH + Seawater	400		
NiFe-	1 M KOH	240	Adv. Funct. Mater., 2022, 32,	
LDH@FeNi ₂ S ₄ /NF	1 M KOH + Seawater	271	2200951	
NiMoN@NiFeN/NF	1 M KOH	277	Nat. Commun., 2019, 10, 5106	
	1 M KOH + Seawater	307		
Mo-Ni ₃ S ₂ /NF	1 M KOH	280	Energy Fuels, 2022, 36 , 2910–	
	1 M KOH + Seawater	291	2917	
NiFe/NiS _x /NF	1 M KOH	\	Proc. Natl Acad. Sci. USA 2019,	
	1 M KOH + Seawater	350	116 , 6624–6629	
BZ-NiFe-LDH/CC	1 M KOH	230	Nano Res. Energy, 2022, DOI:	
	1 M KOH + Seawater	300	10.26599/NRE.2022.9120028	
N-CDs/NiFeLDH/NF	1 M KOH	260	Nano Res., 2022, 15 , 7063–7070	
	1 M KOH + Seawater	340		
NiCoS/NF	1 M KOH	270	Appl. Catal., B, 2021, 291,	
	1 M KOH + Seawater	360	120071	
Ni(OH) ₂ -TCNQ/GP	1 M KOH	340	N D 0000 17 (001 (000	
	1 M KOH + Seawater	382	Nano Res., 2022, 15 , 6084–6090	

Table S3. Comparison of HER performances for NiFeS/NF with other reported HER electrocatalysts.

Electrocatalyst	Electrolyte	Overpotential @ -100 (mV @ mA cm ⁻²)	Reference	
NiFeS/NF	1 M KOH	196	This Work	
	1 M KOH + Seawater	217		
CoP _x /NF	1 M KOH	170	Appl. Catal., B, 2021, 294 ,	
	1 M KOH + Seawater	190	120256	
S-NiMoO ₄ @NiFe-LDH/NF	1 M KOH	170	J. Colloid Interface Sci.,	
	1 M KOH + Seawater	220	2022, 613 , 349–358	
Ni ₂ P-Fe ₂ P/NF	1 M KOH	225	Adv. Funct. Mater., 2021, 31,	
	1 M KOH + Seawater	252	2006484	
Co-N, P-HCS	1 M KOH	\	Adv. Mater., 2022, 34,	
	1 M KOH + Seawater	287	2204021	
1D C OC C O'D1	1 M KOH	280		
1D-Cu@Co-CoO/Rh	1 M KOH + Seawater	320	Small, 2021, 17 , 2103826	
Ni-SN@C	1 M KOH	150	Adv. Mater., 2021, 33 ,	
	1 M KOH + Seawater	180	2007508	
NiMoN/NF	1 M KOH	84	Nat. Commun., 2019, 10,	
	1 M KOH + Seawater	82	5106	
(Co, Fe)PO ₄ /IF	1 M KOH	210	Nanomaterials, 2021, 11,	
	1 M KOH + Seawater	240	2989	
Ni-SA/NC	1 M KOH	245	Adv. Mater., 2021, 33 ,	
	1 M KOH + Seawater	255	2003846	
$Ru_{1,n}$ - $ZnFe_2O_X$ - C	1 M KOH	180		
	1 M KOH + Seawater	\	Small, 2022, 18 , 2204155	
Ru ₂ P@Ru/CNT	1 M KOH	198	Chinese J. Catal., 2022, 43 ,	
	1 M KOH + Seawater	128	1148–1155	
Ni/V ₂ O ₃ /NF	1 M KOH	139	Chem. Eng. J., 2022, 450 ,	
	1 M KOH + Seawater	418	138079	

Table S4. Comparison of overall water splitting performance for NiFeS/NF with other reported bifunctional electrocatalysts.

Electrocatalyst	Electrolyte	Voltages @ 100 (V @ mA cm ⁻²)	Reference	
NiFeS/NF	1 M KOH	1.65	This Work	
	1 M KOH + Seawater	1.67		
Ni ₃ S ₂ -MoS ₂ -Ni ₃ S ₂ /NF	1 M KOH	1.88	Electrochimica Acta,	
	1 M KOH + Seawater	1.82	2021, 390 , 138833	
S,P-(Ni,Mo,Fe)OOH/NiMoP	1 M KOH	1.69	Appl. Catal., B, 2021,	
	1 M KOH + Seawater	1.74	293 , 120215	
Mo-CoP _x /NF	1 M KOH	2.01	Mater. Today Nano,	
	1 M KOH + Seawater	2.16	2022, 18 , 100216	
Ni ₂ P-Fe ₂ P/NF	1 M KOH	1.682	Adv. Funct. Mater., 2021,	
	1 M KOH + Seawater	1.811	31 , 2006484	
NiFe DDA gol gol	1 M KOH	1.57	Adv. Sci., 2022, 9,	
NiFe-PBA-gel-cal	1 M KOH + Seawater	1.64	2200146	
DuN; Eo O /IE	1 M KOH	1.66	Chinese J. Catal., 2022,	
RuNi-Fe ₂ O ₃ /IF	1 M KOH + Seawater	1.73	43 , 2202–2211	
NiFeP/NF	1 M KOH	1.57	Appl. Catal., B, 2022,	
	1 M KOH + Seawater	1.62	302 , 120862	
1D-Cu@Co-CoO/Rh	1 M KOH	2.1	Small, 2021, 17 , 2103826	
	1 M KOH + Seawater	1.9		
NF@NiMoO ₄ /N/P	1 M KOH	1.69	J. Electrochem. Soc.,	
	1 M KOH + Seawater	1.70	2022, 169 , 046511	
Co-Fe ₂ P/NF	1 M KOH	\	Appl. Catal., B, 2021,	
	1 M KOH + Seawater	1.69	297 , 120386	
MoN-Co ₂ N	1 M KOH	1.63	ACS Appl. Mater.	
	1 M KOH + Seawater	1.70	Interfaces, 2022, 14,	
			41924–41933	
S-NiMoO ₄ @NiFe-LDH/NF	1 M KOH	\	J. Colloid Interface Sci.,	
	1 M KOH + Seawater	1.73	2022, 613 , 349–358	

References

- 1 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 2 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 3 J. P. Perdew, K. Burke, and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- V. Wang, N. Xu, J. Liu, G. Tang and W. Geng, Comput. Phys. Commun., 2021,267, 108033.