Supporting Information of

"A High Voltage Aqueous Proton Battery using an Optimized Operation of a MoO₃ Positive Electrode"

Atsunori Ikezawa^{1,*}, Yukinori Koyama², Tadaaki Nishizawa¹, Hajime Arai¹

1. School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-

8502, Japan

2. Research and Services Division of Materials Data and Integrated System, National Institute for

Materials Science, Tsukuba 305-0044, Japan

* Corresponding Author: (E-mail) ikezawa.a.aa@m.titech.ac.jp

Figure S1. A cyclic voltammogram of the MoO₃ composite electrode at 10 mV sec⁻¹ in 50 wt% H₂SO₄ aq.

Figure S2. Schematics of electrochemical three-electrode half-cells for (a) operando X-ray diffraction and (b) charge-discharge measurements and (c) electrochemical three-electrode full-cells.

Figure S3. Operando XRD patterns of the MoO₃ electrode during reduction-oxidation in the potential range from -0.30 to 0.50 V at 100 mA g⁻¹; contour plots of (a) 1st reduction, (b) 1st oxidation, (c) 2nd reduction, and (d) 2nd oxidation.

Figure S4. Charge-discharge property of the MoO₃ electrode in the potential range from -0.30 to 0.50 V; (a) charge-discharge curves; (b) dQ/dV plots. Dotted circles show the redox couple at around 0.3 and -0.1 V, which is only observed at low-rate reduction-oxidations (< 500 mA g⁻¹) as describe in the manuscript.

a) From a-axis

b) From c-axis

Figure S5. Schematic views of crystal structure of MoO3. Purple polyhedral and red spheres denote

MoO₆ octahedra and O atoms, respectively.

		Calculated		Experimental [1]			
a / Å	3.9105			3.9609			
(Error)		(-1.27%)					
b / Å	15.5116 13.8570						
(Error)		(+11.94%)					
<i>c</i> / Å	3.7304 3.6953						
(Error)	(+0.95%)						
Mo (4c)	0.0678	0.0957	1/4	0.075	0.1003	1/4	
O1 (4c)	0.5016	0.4385	1/4	0.443	0.4328	1/4	
O2 (4c)	0.5150	0.0820	1/4	0.501	0.0770	1/4	
O3 (4c)	0.0308	0.2025	1/4	0.068	0.2242	1/4	

Table S1. Structure parameters of MoO_3 .

Figure S6. Charge-discharge curves of the MoO₃ electrode in the potential range from 0.05 to 0.50 V at 100 mA g^{-1} .

As prepared

After 1st reduction

After 30th oxidation

Figure S7. Ex-situ SEM images of the MoO3 electrodes (upper). EDX maps of Mo element (red)

(lower).

Figure S8. Reduction-oxidation curves of the MoO3 electrode at different current densities.

Figure S9. Charge-discharge property of the H_xMoO_3 (phase-III)|50 wt% $H_2SO_4|H_xMoO_3$ (phase-III)Phase-IV) full-cell at 200 mA g⁻¹, 1st cycle; (a) cell voltage; (b) potentials of positive and negative electrodes. The capacities were calculated based on the mass of MoO₃ in one side of the electrode. The loading masses of the positive and negative electrodes were set to the same value. Before the full-cell construction, the positive electrode was reduced and oxidized in the potential range from 0 to 0.5 V at 200 mA g⁻¹ for 3 cycles, and the cycle was terminated at the reduced state. The negative electrode was reduced and oxidized in the potential range from –0.3 to 0.0 V at 100 mA g⁻¹ for 3 cycles, and the cycle was terminated at the oxidized and energy density based on the total mass of the active materials are 0.33 V and 15 Wh kg⁻¹, respectively.

Table S2. Performances of the full cells shown in Fig. 5 and Fig. S9. The capacities during the first discharging and energy densities were calculated based on the total masses of the active materials.

Cell configuration	Capacity / mAh g ⁻¹	Average voltage / V	Energy density / Wh kg ⁻¹	
MoO ₃ phase-I 50 wt% H ₂ SO ₄ phase-III Phase-IV	36.5	0.48	17	
phase-III phase-III 50 wt% H2SO4 phase-III Phase-IV	46.5	0.33	15	

Reference

1. T. Leisegang, A.A. Levin, J.M. Walter, D.C. Meyer, Cryst. Res. Technol., 2005, 40, 95-105.