Supporting Information

Strengthened Phonon Scattering and Band Convergence

Synergistically Realize High-Performance SnTe Thermoelectric

Gang Wu^{1,2}, Zhe Guo^{1,2}, Xiaojian Tan^{1,2,*}, Ruoyu Wang^{1,2}, Qiang Zhang^{1,2}, Haoyang

Hu¹, Peng Sun^{1,2}, Jiehua Wu¹, Guo-Qiang Liu^{1,2}, Jun Jiang^{1,2,*}

¹ Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

² University of Chinese Academy of Science, Beijing 100049, China.

Email: tanxiaojian@nimte.ac.cn, jjun@nimte.ac.cn

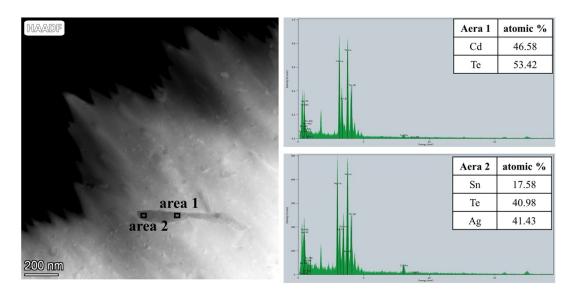
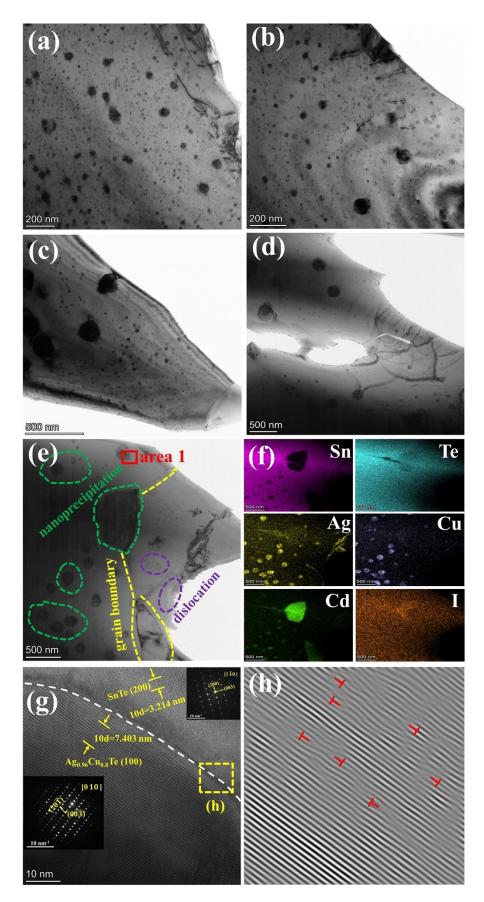
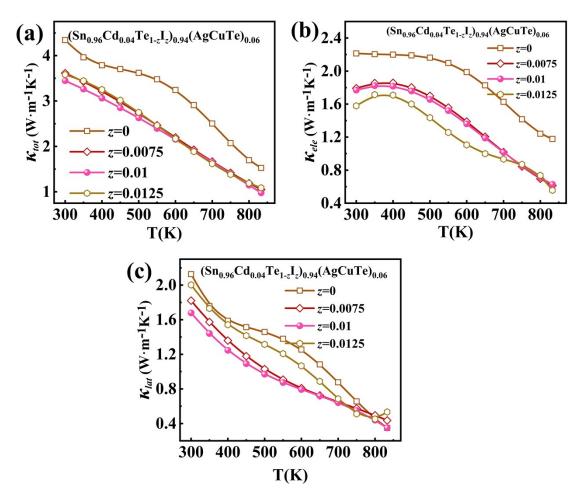




Figure S1. The HAADF image and its elements composition results of area 1 and area 2.

Figure S2. TEM analyses of the $(Sn_{0.96}Cd_{0.04}Te_{0.99}I_{0.01})_{0.94}(AgCuTe)_{0.06}$ sample: (a-e) The medium magnification TEM image to show the grain boundaries, dislocations and

nanoprecipitates defects, (f) its corresponding EDS mapping of Sn, Te, Ag, Cu, Cd, I; (g) The high-resolution TEM image from selected area "1" in (e) near the nanoprecipitate and the inset is the selected area electron diffraction (SAED) pattern along the $[1\overline{10}]$ direction of SnTe and the [010] direction of Ag_{0.96}Cu_{0.8}Te, (h) the IFFT image from the selected area in (g) to display the dislocations distribution.

Figure S3. The temperature dependent thermal transport properties of $(Sn_{0.96}Cd_{0.04}Te_{1.}zI_z)_{0.94}(AgCuTe)_{0.06}$ samples (z = 0, 0.0075, 0.01, 0.0125): (a) total thermal conductivity κ_{tot} , (b) electrical thermal conductivity κ_{ele} , (c) lattice thermal conductivity κ_{lat} .