Ultra-porous superamphiphilic aerogel enabled ultra-stable continuous

separation of emulsion

Yujia Wang^{a,b}, Baicun Hao^{a,b}, Hanzhong Xiao^b, Yiwen Cui^b, Xin Huang^{a,b,*} and Bi Shi ^{a,b,*}

^a National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China, xhuangscu@163.com, sibitannin@vip.163.com

^b College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China

Fig. S1 XPS survey scan spectrum of the CFs-superamphiphilic aerogel.

Fig. S2 FTIR spectra of the CFs-superamphiphilic aerogel.

Fig. S3 Schematic illustration showing the emulsion separation system.

		SDBS/Span80	CTAB/Span8	XAZata				Petroleu
Emulsion	Span80	(g)	0	wate	Dodecane	Kerose	Octane	m
	(g)		(g)	r (m.L.)	(mL)	n (mL)	(mL)	ether
				(mL)				(mL)
NE1	2.0	0	0	8.0	1000	0	0	0
NE2	2.0	0	0	8.0	0	1000	0	0
NE3	2.0	0	0	8.0	0	0	1000	0
NE4	2.0	0	0	8.0	0	0	0	1000
NE5	0	0.1 /1.5	0	10.0	1000	0	0	0
NE6	0	0.1 /1.5	0	10.0	0	1000	0	0
NE7	0	0.1 /1.5	0	10.0	0	0	1000	0
NE8	0	0.1 /1.5	0	10.0	0	0	0	1000
NE9	0	0	0.1 /1.5	10.0	1000	0	0	0
NE10	0	0	0.1 /1.5	10.0	0	1000	0	0
NE11	0	0	0.1 /1.5	10.0	0	0	1000	0
NE12	0	0	0.1 /1.5	10.0	0	0	0	1000

Table S1 Ingredients of the	e prepared W	/O emulsions.
-----------------------------	--------------	---------------

Fig. S4 DLS curves of NE2 (a) before and (d) after the separation by the CFssuperamphiphilic aerogel, DLS curves of NE3 (b) before and (e) after the separation by the CFs-superamphiphilic aerogel, DLS curves of NE4 (c) before and (f) after the separation by the CFs-superamphiphilic aerogel. The insets in a and d show the digital photographs of NE2 and the filtrate of NE2, respectively. The insets in b and e show the digital photographs of NE3 and the filtrate of NE3, respectively. The insets in c and f show the digital photographs of NE4 and the filtrate of NE4, respectively.

Fig. S5 DLS curves of NE5 (a) before and (e) after the separation by the CFssuperamphiphilic aerogel, DLS curves of NE6 (b) before and (f) after the separation by the CFs-superamphiphilic aerogel, DLS curves of NE7 (c) before and (g) after the separation by the CFs-superamphiphilic aerogel, DLS curves of NE8 (d) before and (h) after the separation by the CFs-superamphiphilic aerogel. The insets in a and e show the digital photographs of NE5 and the filtrate of NE5, respectively. The insets in b and f show the digital photographs of NE6 and the filtrate of NE6, respectively. The insets in c and g show the digital photographs of NE7 and the filtrate of NE7, respectively. The insets in d and g show the digital photographs of NE8 and the filtrate of NE8, respectively.

Fig. S6 DLS curves of NE9 (a) before and (e) after the separation by the CFssuperamphiphilic aerogel, DLS curves of NE10 (b) before and (f) after the separation by the CFs-superamphiphilic aerogel, DLS curves of NE11 (c) before and (g) after the separation by the CFs-superamphiphilic aerogel, DLS curves of NE12 (d) before and (h) after the separation by the CFs-superamphiphilic aerogel. The insets in a and e show the digital photographs of NE9 and the filtrate of NE9, respectively. The insets in b and f show the digital photographs of NE10 and the filtrate of NE10, respectively. The insets in c and g show the digital photographs of NE11 and the filtrate of NE11, respectively. The insets in d and h show the digital photographs of NE12 and the filtrate of NE12, respectively.

Fig. S7 (a) Water contents in the filtrates of NE1, NE2, NE3 and NE4 separated by the CFs-superamphiphilic aerogel, (b) water contents in the filtrates of NE5, NE6, NE7 and NE8 separated by the CFs-superamphiphilic aerogel, (c) water contents in the filtrates of NE9, NE10, NE11 and NE12 separated by the CFs-superamphiphilic aerogel.

Fig. S8 Images showing the separation failure of NE1 by melamine foam, polyurethane foam and polyether foam, respectively.