Degradation of phenolic compounds in wastewater using a conical packed bed microbial

fuel cell in continuous flow with recycle

Shiv Singh^{a,b*}, Komal Pandey^c, Nishith Verma^{c,d*}

^aIndustrial Waste Utilization, Nano and Biomaterials, Council of Scientific and Industrial

Research- Advanced Materials and Processes Research Institute, Bhopal-462026, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

°Center for Environmental Science and Engineering Indian Institute of Technology Kanpur,

Kanpur-208016, India

^dDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India

Corresponding authors: Dr. Shiv Singh: <u>sshiv.singh@ampri,res.in</u>, <u>sshiviitk@gmail.com</u>; Dr. Nishith Verma: <u>vermanishith@gmail.com</u>, <u>nishith@iitk.ac.in</u>

Figure S1. Digital images of Recycle-SCMFC setup in continuous mode.

Figure S2. Effect of flowrates (RQ = 0 and Q = 1, 3 and 5 cc/min, left side) on (a) voltage generation, (b) % COD reduction of wastewater, and (c) % degradation of 1-2-PD (1000 ppm) w.r.t. time (h). Effect of flowrates (RQ = 1 and Q = 1, 3 and 5 cc/min, right side) on (d) voltage generation (e) %COD reduction and (f) % degradation of 1-2-PD (1000 ppm) w.r.t. time (h).

Figure S3. SEM image of a thick and dense biofilm on the anode surface.

Figure S4. EIS analysis of the prepared recycle-SCMFC in continuous mode using 1000 ppm of 1-2-PD.

S.No.	Type of industrial effluent	COD (mg/L)	Chamber volume (mL)	Anode/Cathode	Flow rate (mL/min)	% COD reduction	OCP (mV)	Power density (mW/m ²)	Current density (mA/m ²)	Ref.
1	1,2 Propanediol/Propylene glycol	10000	51	CeO ₂ -CNF/ACB / CeO ₂ -CNF/ACF	1, 3, 5	84	380	~420	~ 4500 mA/m ³	This study
2	Glycerol	9200	346	Cu-Ru/MgO catalysts	0.03	97				1
3	Ethoxylated nonylphenols (NPnEO) (synthetic nonionic surfactant)	30, 60, 90	6500	silica beads, granular activated carbon, or glass spheres	9.0, 10.6,13.2	77-99				2
4	Ethylphenol (4-EP)	40000	6200	K5 biomass carriers						3
5	Phenol	2400	5000	sugarcane bagasse (SCB)	4, 8, 12, 16, 20	94				4
6	Phenol, o-cresol, and p- cresol	300	450	stainless steel mesh	300 - 500	93				5
7	SCMFC	Phenol	1000, 2000	5000	tea waste	5.46, 8.19, 16.3	120	97		6

Table S1. Comparison of the SCMFC developed in this study with the literature for the treatment of phenolic wastewater.

References

- 1. D. K. Pandey and P. Biswas, *New Journal of Chemistry*, 2019, **43**, 10073-10086.
- 2. L. Bertin, D. Di Gioia, C. Barberio, L. Salvadori, L. Marchetti and F. Fava, *Industrial & engineering chemistry research*, 2007, **46**, 6681-6687.
- 3. C. Genethliou, M. Kornaros and S. Dailianis, *Journal of environmental management*, 2020, **255**, 109882.
- 4. B. Basak, B.-H. Jeon, M. B. Kurade, G. D. Saratale, B. Bhunia, P. K. Chatterjee and A. Dey, *Ecotoxicology and Environmental Safety*, 2019, **180**, 317-325.
- 5. Y. Zhou and M. Nemati, *Water, Air, & Soil Pollution*, 2018, **229**, 1-14.
- 6. A. Gupta and C. Balomajumder, *Korean Journal of Chemical Engineering*, 2016, **33**, 559-566.