Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Pyrolyzed cobalt hexacyanocobaltate dispersed on reducedgraphene-oxide as an electrocatalyst of the oxygen reduction reaction in an alkaline medium

B. Zakrzewska¹, A. Jabłońska¹, L. Adamczyk², B. Dembińska¹, A. Kostuch¹, M. Strawski¹, I.A. Rutkowska¹, P.J. Kulesza¹, M. Marcinek³, J.A. Cox⁴, K. Miecznikowski^{1*}

 ¹University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
 ² Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Al. Armii Krajowej 19, 42-201 Czestochowa, Poland
 ³Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
 ⁴Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

*Corresponding Author E-mail address: kmiecz@chem.uw.edu.pl Tel.: +48-22-5526340;

Figure S1. Current-potential RDE curves recorded in O₂-saturated 0.1 mol dm⁻³ KOH solution for materials derived by thermal treatment of CoHCNCo at various temperatures. Scan rate, 10 mV s⁻¹; rotation rate: 1600 rpm.

Figure S2. TGA profile of CoHCNCo.

Figure S3. N₂ adsorption-desorption isotherms of CoHCNCo (red), rGO (black), NCoC thermally formed at 500 ^oC from CoHCNCo in the absence of rGO (green), and NCoC@rGO thermally formed at 500 ^oC from CoHCNCo@rGO (blue).

Figure S4. Pore size (a) and pore volumes (b) distributions for CoHCNCo (red curve) and NCoC@rGO formed by pyrolysis of CoHCNCo at 500 $^{\circ}$ C (blue curve).

Figure S5. A) The overall XPS spectrum for CoHCNCo (red line) and NCoC@rGO (blue line). B) Co 2p spectral region of $K_3[Co(CN)_6]$.

Figure S6 Number of transferred electrons (n) per oxygen molecule during the ORR at NCoC@rGO (solid line), and Pt/C nanoparticles (dashed line).

Figure S7. The LSV curves of rGO-, CoHCNCo- and NCoC@rGO-modified electrodes in 2 mmol dm⁻³ H₂O₂, 0.1 mol dm⁻³ KOH solution. Scan rate, 10 mV s⁻¹.

Figure S8. A) Linear scan voltammetry in O₂-saturated 0.1 mol dm⁻³ KOH at a NCoC@rGOmodified disk as a function of rotation rate in the range, 400 - 2500 rpm. Scan rate, 10 mV s⁻¹. B) Levich plots corresponding to Fig. S8A conditions for the ORR at NCoC@rGO and Pt/C.

Catalyst	Synthesis procedure	E _{onset} (V vs RHE)	E _{1/2} (V vs RHE)	Number of electrons	Ref.
CoFe-NC/NC	Pyrolysis of CoFePBA at 800 ^o C	0.96	0,83	3.94-3.99	1
Co/C	pyrolysis of ZIF-67 at 900 °C	0.85	0.80	-	2
CdHCF	-	0.84	-	2.4	3
CoFe@NCS	Pyrolysis of CoHCNFe with ZIF-8 at 750 ^o C	-	0.83	3.7	4
CuHCF/f-CNT	Hydrothermal synthesis at 120 °C	0.79	0.63	3.68	5
NCoC@rGO	Pyrolysis of CoHCNCo/rGO	0.92	0.83	3.7-3.8	In this work

Table S1. Comparison of the ORR performance for different catalysts.

References

- 1 T. Najam, M. Wang, M. S. Javed, S. Ibraheem, Z. Song, M. M. Ahmed, A. ur Rehman, X. Cai and S. S. A. Shah, *Journal of Colloid and Interface Science*, 2020, **578**, 89–95.
- 2X. Jin, Y. Xie, C. Zhao, Y. Xu, Y. Lv, H. Wang, L. Chen and J. Huang, *Progress in Natural Science: Materials International*, 2021, **31**, 527–535.
- 3N. K. Shrestha, H. T. Bui, S. J. Yoon, S. A. Patil, C. Bathula, K. Lee, Y.-Y. Noh and S.-H. Han, *Journal of Electroanalytical Chemistry*, 2019, **847**, 113179.
- 4H. Cheng, Y. Zhuang, C. Meng, B. Chen, J. Chen, A. Yuan and H. Zhou, *Applied Surface Science*, 2023, **607**, 154953.
- 5P. Jain, S. Jha and P. P. Ingole, Sustainable Energy Fuels, 2022, 6, 1094–1107.