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Note S1: optimized Slack model

To verify the prediction accuracy of the trained ML models, the optimized Slack model1 

with an updated coefficient (A) is used to predict the κ for the 350 materials based on the 

basic properties, which are taken as descriptors in the ML models [Eq. (8) in the maintext], 

and the results are shown in Fig. S1. The κSlack predicted by the optimized Slack model 

reasonably agrees with the experimentally measured κExp. with the discrepancy in about one 

order of magnitude, which has better performance than the previous prediction of the 350 

types of materials2 using the original Slack model. By comparing the performance of ML 

models (Fig. 2 in the main text) and the optimized Slack model, it is distinctly shown that the 

ML models have a great advantage over the Slack model for the accurate prediction of κ.

Fig. S1 The prediction accuracy of the optimized Slack model [Eq. (8)] against the experimental κ. The 

formula of the optimized Slack model is displayed as an illustration. The orange shaded ellipse marks 

the prediction with large discrepancy (generally more than one order of magnitude) from the κExp. The 

blue shade marks the boundary of the discrepancies by one order of magnitude higher and lower.
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Note S2: data visualization and feature engineering

A detailed analysis of the experimental datasets is conducted and the more in-depth 

exploration of the internal relationship between the variables has been carried out. Firstly, we 

use the t-SNE technique to perform dimensionality reduction analysis on some feature 

variables. T-SNE technology is a data structure visualization technology that can embed high-

dimensional datasets into two-dimensional or three-dimensional spaces3,4.

Fig. S2 T-SNE visualization of 8 basic properties containing V, M, n, np, B, G, B′, and G′. (a)2D t-SNE 

visualization. (b)3D t-SNE visualization. Each dot represents one type of material, and the coordinate 

axis is the measure of the two-dimensional or three-dimensional hidden variable obtained after 

dimensionality reduction of the 8-dimensional datasets.

At the same time, the feature embedding method of the materials is explored using the 

popular embedding network as well as the t-SNE technology. There are a large number of 

textual and categorical features, i.e. the names of the materials, space groups, etc. The 

information can not only help to identify different materials when performing the 

visualization operations, but also will play an equally important role for thermal conductivity 

prediction and material representation. However, most of the information has high 

dimensionality, which is not suitable for traditional one-hot encoding method. Therefore, we 

use the training set containing 350 kinds of materials, and take the material names (350 

categories) and space group types (25 categories) as the input of the embedding network, in 

order to map high-dimensional categorical variables to a low-dimensional learned 

representation, and then reduce the dimension to a 3-dimensional vector output. Furthermore, 
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we use t-SNE to convert 3D vectors to 2D vectors and visualize them, revealing the 

correlation between material characteristics and thermal conductivity as shown in Fig. S3.

Fig. S3 T-SNE Visualization of materials Embeddings. (a) Colored by the magnitude of thermal 

conductivity (b) Colored by the space group categories. Axes provide a good description of material 

names and space group categories.

We have plotted a clustered heatmap with Seaborn Clustermap to explore the internal 

correlation and similarity between variables. The clustering between feature descriptors has 

been visualized using hierarchical clustering analysis dendrogram, and the results are shown 

in Fig. S4. Some variables have shown strong correlation with each other i.e. the similarity 

between and the variables , , , while the variables V, M, n also showed a certain Θ𝐷 𝜈𝐿 𝜈𝑆 𝜈𝑎 

correlation.
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Fig. S4 Clustermap shows Pearson correlation among 21 feature descriptors. Rows and columns are 

grouped by cluster analysis using Euclidean distance as a measure. We use the clusters in the 

dendrogram to distinguish more similar materials, and the color labels represent the feature similarity 

between the variables.

Among the 21 properties in Table 1 of the manuscript, all the other properties can be 

derived from the 8 basic properties of V, M, n, np, B, G, B′, and G′. We use the 8 basic 

material properties to represent all the other properties from the perspective of formula, and 

show the relationships between these material properties in Table S15.
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Table S1: The symbols and the relationship between material properties

Symbols expression

V( )Å3 --

M --

n --

np --

(g/cm3)𝜌     
𝑛𝑀
𝑉𝑁𝐴

B(GPa) --a

G(GPa) --a

E(GPa) 9 ∗ 𝐵 ∗ 𝐺/(3 ∗ 𝐵 + 𝐺)

 𝜈 (3 ∗ 𝐵 ‒ 2 ∗ 𝐺)/2/(3 ∗ 𝐵 + 𝐺)

H(GPa) 2 ∗ (𝐺3/𝐵2)0.585

B′ 𝑑𝐵/𝑑𝑉

G′ 𝑑𝐺/𝑑𝑉

(103 m/s)𝜈𝐿
(𝐵 + 4/3𝐺)

𝜌

(103 m/s)𝜈𝑆
𝐺
𝜌

(103 m/s)𝜈𝑎 [1
3( 1

𝑣3
𝐿

+
1

𝑣3
𝑆
)] ‒ 1/3

 Θ𝐷
ℎ

𝑘𝐵
[3𝑉
4𝜋]1/3𝜈𝑎𝑛𝑝

‒ 1/3

 𝛾𝐿 ‒
1
2

𝑉
𝐵 + 4𝐺 3

∂(𝐵 + 4𝐺 3)
∂𝑉

‒
1
6

 𝛾𝑆 ‒
1
2

𝑉
𝐺

∂𝐺
∂𝑉

‒
1
6

 𝛾 [(𝛾𝐿)2 + 2(𝛾𝑆)2] 3

A
1

1 + 1 𝛾 + 8.3 × 105 𝛾2.4

κ --b
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a Bulk modulus (B) and shear modulus (G) describe the material's response to different 

kinds of stress in material science, which arise in the generalized Hooke's law: 

The bulk modulus B describes the material's response to uniform hydrostatic pressure, 

while the shear modulus G describes the material's response to shear stress. As for isotropic 

materials, bulk modulus (B) and shear modulus (G) are not independent, which are connected 

via the equations6

(S1)𝐸 = 2𝐺(1 + 𝑣) = 3𝐵(1 ‒ 2𝑣)

where E is the Young’s modulus describing the material's strain response to uniaxial stress in 

the direction of this stress, and  is Poisson’s ratio. All the properties can be found in Table 1 𝑣

of the manuscript. However, complex anisotropic materials exhibit differing material 

response to stress or strain when tested in different directions. In those cases, Eq.(S1) does not 

hold, and the full generalized Hooke's law must be used to evaluate the stress on material7.

b The κ can be calculated theoretically by the Slack model, where the accuracy is limited by 

the lacking of phonon transport details.



8 / 17

Note S3: Semi-supervised learning

The training idea of semi-supervised learning model using pseudo labelling technique8,9 is 

briefly shown in Fig. S5. By training the labeled samples, the unlabeled samples are predicted 

and the prediction results are taken as new labels. Then, the unlabeled and labeled data are 

combined for further training, and the second time prediction is performed. The MSE value of 

the unlabeled data between the two prediction results should be evaluated, and the new labels 

can be defined by the part of the samples with the minimum MSE. Finally, it is necessary to 

iterate repeatedly according to the above steps until the error converges10,11.

 

Fig. S5 working flow of semi-supervised learning.
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Note S4: Active learning

The general idea of active learning is to query the most useful unlabeled samples through 

some specific methods, and hand them over to experts for marking. Then, use the queried 

samples to train the model to improve model performance12 (Fig. S6). A model with better 

performance can be obtained with fewer labeled samples, and thus it has been widely used in 

terms of machine learning.

Fig. S6 working flow of active learning.

Aiming at achieving the active learning strategies, we integrate the encapsulated four Keras 

models into modAL workflow. Among the 350 materials, 10 of them have been randomly 

selected as initial data without repetition, and then we shall generate the pool by removing the 

initial data from the training dataset. After defining and initializing the active learner, the data 

are queried by Committee Regressor and put into y_new cyclically. 
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Fig. S7 Comparison between the κprediction calculated by the optimized Slack model [Eq.(8)] and the 

κML. predicted by the four deep active learning models for a large set of materials: (a) the 1521 dataset, 

(b)FCC structures, (c)half Heusler, (d)average prediction of the four deep learning models. The blue 

shade marks the boundary of the discrepancies by one order of magnitude higher and lower.
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Note S5: K-fold cross-validation

As an important means to effectively prevent overfitting and reduce errors, K-fold cross-

validation has been widely used in previous literatures. The method is used in this study as a 

means of model training and prediction13,14. Fig. S8 shows the principle of K-fold cross-

validation, which can be described as: 1) divide the data set into n folds, while training the 

model on (n-1) folds, and the remaining 1-fold is used as the validation set; 2) the data should 

be iterated until each fold already participates in training, and the model score is calculated as 

the average of the n-folds validation score.

Fig. S8 Working principle of K-fold cross-validation taking the most widely used 5-fold cross-

validation as an example.

The results of prediction using K-fold cross-validation alone are shown in Fig. S9. From 

the comparative analysis, it can be concluded that the use of incompletely supervised learning 

seems to have a better performance in obtaining results close to the true thermal conductivity 

values.
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Fig. S9 Comparison between the κprediction calculated by the optimized Slack model [Eq.(8)] and the 

κML. predicted by the four deep learning models using K-fold cross-validation strategy for a large set of 

materials: (a)the 1521 dataset, (b)FCC structures, (c)half Heusler, (d)average prediction of the four 

deep learning models. The blue shade marks the boundary of the discrepancies by one order of 

magnitude higher and lower.
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Note S6: Feature importance of eight basic material properties

Most of the models optimized for performance, especially deep learning models, are black-

box models. Consequently, it is difficult to have a deep insight into feature importance of 

these models. To further explore interpretability of the models with good performance as 

revealed, we further try to explain our deep learning models with SHapley Additive 

exPlanations (SHAP) values.

The SHAP15 provides a convenient way to explain the output of any machine learning 

model. We calculate feature importance of eight basic material properties based on validation 

set by SHAP, and use the shap.summary_plot() function to plot the analysis results in Fig. 

S10 and Fig. S11. The advantage of this tool is that it can clearly show SHAP values for all 

the features and all samples in validation set. In Fig. S10 and Fig. S11, the SHAP values have 

been sorted by the importance, and the first one is the most important feature. In addition, we 

provide useful information of how each feature affects the model output.

Fig. S10 Sorted SHAP values for all the features and all samples in models of (a) ANN, (b) CNN, (c) 

RNN, (d) LSTM validation set. The color represents the relationship between the size of the feature 

value and the predicted impact, where the characteristic value distribution is also displayed.
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Fig. S11 Global feature importance of eight basic material properties in models of (a) ANN, (b)CNN, 

(c)RNN, (d)LSTM validation set. The standard bar plot is obtained by calculating the mean absolute 

value of the SHAP values for each feature.
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Note S7: Prediction performance of deep learning models for low-κ 

materials

By analyzing the results of model training and testing, it can be easily concluded that four 

deep learning models mentioned in the manuscript have better ability to predict κ values 

spanning over four orders of magnitude. Therefore, to show the prediction performance of 

these models for low-κ materials more objectively and accurately, some low-κ materials with 

thermal conductivities lower than 3 W/mK are selected from training set(280) and test set(70), 

and the comparison between their predicted values and first principle calculations of four 

deep learning models for selected materials with low thermal conductivity are listed in the 

following table.
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Table S2: Prediction performance of deep learning models for low-κ materials. Some low 

thermal conductivity materials containing Na, Ag and Cu elements are listed below, in which 

κexp. represents first principle calculations, while κLSTM, κANN, κCNN and κRNN stand for the 

predicted values of LSTM, ANN, CNN and RNN.

Name of 
Materials κexp. κLSTM κANN κCNN κRNN Dataset

22913-CuBr 2.94 2.72 3.66 2.76 2.40 training 
set

20118-Ag2Cr4Te8 0.107 0.143 0.140 0.0856 0.683 training 
set

22922-AgCl 1.22 1.81 4.42 1.67 2.31 training 
set

22925-AgI 1.51 1.92 2.66 1.10 3.040 test set

5342-AgGaS2 1.79 1.66 1.32 0.62 1.28 test set

1100443-SeKNa 2.13 2.53 3.31 1.56 3.67 test set

22916-NaBr 1.32 1.48 2.21 0.912 2.55 test set

542680-
Au4In8Na12

0.158 0.264 0.188 0.0947 0.840 training 
set

NaAsBa_1766119 2.91 3.05 4.09 4.44 2.92 training 
set

NaBaSn_2750457 1 1.29 1.89 2.15 1.26 training 
set

NaBiSr_2805096 1.83 1.76 2.66 2.72 2.04 test set

NaGeBa_2694166 2.44 1.64 2.31 2.50 1.37 training 
set

NaKTe_2672659 1.82 1.38 2.18 1.68 1.38 training 
set
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