## **Electronic Supplementary Information**

## Nanofibrillar hydrogels outperform Pt/C for hydrogen evolution reactions under high-current conditions

Jinwoo Park,<sup>‡a</sup> Dasom Jeon,<sup>‡ab</sup> Yunseok Kang,<sup>ab</sup> Jungki Ryu<sup>\*abc</sup> and Dong Woog Lee<sup>\*a</sup>

<sup>a</sup>Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

<sup>b</sup>Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

<sup>c</sup>Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

‡J. Park and D. Jeon contributed equally to this work.

\*Corresponding authors.

Email addresses: jryu@unist.ac.kr (J. Ryu); dongwoog.lee@unist.ac.kr (D. W. Lee).



Fig. S1. Air contact and sliding angles of a) fNi and b) hydrogel-coated fNi (HG-fNi).



Fig. S2. High-speed camera images of air bubbles (volume =  $25 \mu$ L) colliding with a) NiF and b) HG-NiF.

| а | fNi        | 0.0000 s      | 0.0050 s | 0.0100 s    | 0.0150 s | 0.0200 s               | 0.0250 s | 0.0300 s                                | 0.0350 s    |
|---|------------|---------------|----------|-------------|----------|------------------------|----------|-----------------------------------------|-------------|
|   | <b>†</b>   | •             | •        |             |          | •                      | •        |                                         |             |
|   | Air bubble |               |          | deformation | bouncing |                        |          |                                         |             |
|   | 0.0400 s   | 0.0450 s      | 0.0500 s | 0.0550 s    | 0.0600 s | 0.0650 s               | 0.0700 s | 0.0750 s                                | 0.0800 s    |
|   | •          | 0             | •        |             |          |                        |          |                                         |             |
|   | L          | ,<br>pinnning | <i>I</i> | Ŀ           | J.       | Wenzel /<br>transition |          | , - , , , , , , , , , , , , , , , , , , | Ŀ           |
| h |            |               |          |             |          |                        |          |                                         |             |
| D | HG-fNi     | 0.0000 s      | 0.0025 s | 0.0050 s    | 0.0075 s | 0.0100 s               | 0.0125 s | 0.0150 s                                | 0.0175 s    |
|   | 1          | •             |          |             | <b>U</b> | Ο                      | •        | •                                       | •           |
|   | Air bubble |               |          | deformation | bouncing |                        |          |                                         |             |
|   | 0.0200 s   | 0.0225 s      | 0.0250 s | 0.0275 s    | 0.0300 s | 0.0325 s               | 0.0350 s | 0.0375 s                                | 0.0400 s    |
|   | •          | 0             | •        |             |          |                        |          |                                         |             |
|   |            |               |          | no pinning  |          | rolling                |          |                                         | rolling out |

Fig. S3. High-speed camera images of air bubbles (volume = 1  $\mu$ L) colliding with a) fNi and b) HG-fNi.

|        |                   | R <sub>2</sub> <sup>b</sup> (Ω) |  |
|--------|-------------------|---------------------------------|--|
|        | $R_1^{a}(\Omega)$ | CPE <sup>c</sup> (mF)           |  |
|        |                   | 29.86                           |  |
| NI     | 4.46              | 46.98                           |  |
|        |                   | 21.85                           |  |
| HG-NiF | 3.877             | 30.78                           |  |

Table S1. Fitting results of electrochemical impedance spectra shown in Figure 4d.

 ${}^{a}R_{1}$  is a series resistance of electrical conduction through an external circuit and ionic conduction through an electrolyte.

<sup>b</sup>R<sub>2</sub> represents a resistance related to catalytic hydrogen evolution reaction.

<sup>c</sup>CPE represent a constant phase element.

| Catalyst                                  | Electrolyte | Overpotential (mV)               | Ref.      |
|-------------------------------------------|-------------|----------------------------------|-----------|
| HG-NiF                                    | 1.0 M KOH   | -750 @ -1000 mA cm <sup>-2</sup> | This work |
| Pt/C                                      | 1.0 M KOH   | -750 @ -693 mA cm <sup>-2</sup>  | This work |
| CoMoS <sub>x</sub>                        | 1.0 M KOH   | -280 @ -600 mA cm <sup>-2</sup>  | [1]       |
| P-Ni(OH) <sub>2</sub> /NiMoO <sub>4</sub> | 1.0 M KOH   | -500 @ -300 mA cm <sup>-2</sup>  | [2]       |
| NSF/CNT                                   | 1.0 M KOH   | -320 @ -300 mA cm <sup>-2</sup>  | [3]       |
| CoSF/CNT                                  | 1.0 M KOH   | -700 @ -350 mA cm <sup>-2</sup>  | [3]       |
| FeSF/CNT                                  | 1.0 M KOH   | -500 @ -300 mA cm <sup>-2</sup>  | [3]       |
| FeCoNi-HNTAs                              | 1.0 M KOH   | -280 @ -150 mA cm <sup>-2</sup>  | [4]       |
| MoS <sub>2</sub>                          | 1.0 M KOH   | -600 @ -150 mA cm <sup>-2</sup>  | [4]       |
| Cu <sub>3</sub> P                         | 1.0 M KOH   | -400 @ -120 mA cm <sup>-2</sup>  | [5]       |
| CoMnP/Ni <sub>2</sub> P                   | 1.0 M KOH   | -200 @ -50 mA cm <sup>-2</sup>   | [6]       |

**Table S2.** Overpotentials of various superaerophobic electrodes shown in Figure 4e for alkalinehydrogen evolution reaction.

| Catalyst                 | Electrolyte | Overpotential<br>(mV) | Current<br>density<br>(mA cm <sup>-2</sup> ) | Mass<br>loading<br>(mg cm <sup>-2</sup> ) | Price<br>(\$ mg <sup>-1</sup> ) | Ref.      |
|--------------------------|-------------|-----------------------|----------------------------------------------|-------------------------------------------|---------------------------------|-----------|
| HG-NiF                   | 1.0 M KOH   | 750                   | 1000                                         | 0.002                                     | 22.5                            | This work |
| Pt/C                     | 1.0 M KOH   | 750                   | 693                                          | 28                                        | 0.0070                          | This work |
| Ru@Co-SAs                | 1.0 M KOH   | 7                     | 10                                           | 0.285                                     | 0.0032                          | [7]       |
| RuCo                     | 1.0 M KOH   | 28                    | 10                                           | 0.28                                      | 0.0021                          | [8]       |
| Ni-MOF                   | 1.0 M KOH   | 40                    | 10                                           | 0.5                                       | 0.000018                        | [9]       |
| Ni(OH) <sub>2</sub> /CuS | 1.0 M KOH   | 95                    | 10                                           | 0.29                                      | 0.000012                        | [10]      |
| CoSAs-CoNPs              | 1.0 M KOH   | 205                   | 10                                           | 14                                        | 0.000053                        | [11]      |

**Table S3.** Comparison of HG-NiF to the efficiency and prices of various inorganic catalysts in 1.0 M KOH solution.

## **Supporting References**

[1] X. Shan, J. Liu, H. Mu, Y. Xiao, B. Mei, W. Liu, G. Lin, Z. Jiang, L. Wen, L. Jiang, An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting, Angew. Chem. Int. Ed. 59 (2020) 1659-1665.

[2] W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S.U. Khan, Y. Wang, Y. Li, Superaerophobic Pdoped Ni(OH)<sub>2</sub>/NiMoO<sub>4</sub> hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting, Dalton Trans. 47 (2018) 8787-8793.

[3] M. Guo, A. Qayum, S. Dong, X. Jiao, D. Chen, T. Wang, In situ conversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni<sub>3</sub>S<sub>2</sub>, Co<sub>9</sub>S<sub>8</sub> or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting, J. Mater. Chem. A 8 (2020) 9239-9247.

[4] H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song, X. Wang, Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting, Nat. Commun. 9 (2018) 2452.

[5] J. Hao, W. Yang, Z. Huang, C. Zhang, Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution, Adv. Mater. Interfaces, 3 (2016) 1600236.

[6] M. Liu, Z. Sun, S. Li, X. Nie, Y. Liu, E. Wang, Z. Zhao, Hierarchical superhydrophilic/superaerophobic CoMnP/Ni<sub>2</sub>P nanosheet-based microplate arrays for enhanced overall water splitting, J. Mater. Chem. A 9 (2021) 22129-22139.

[7] S. Yuan, Z. Pu, H. Zhou, J. Yu, I.S. Amiinu, J. Zhu, Q. Liang, J. Yang, D. He, Z. Hu, G. Van Tendeloo, S. Mu, A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values, Nano Energy 59 (2019) 472-480.

[8] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media, Nat. Commun. 8 (2017) 14969.

[9] L. Wang, L. Ren, X. Wang, X. Feng, J. Zhou, B. Wang, Multivariate MOF-templated pomegranate-like Ni/C as efficient bifunctional electrocatalyst for hydrogen evolution and urea

oxidation, ACS Appl. Mater. Interfaces 10 (2018) 4750-4756.

[10] S.-Q. Liu, H.-R. Wen, G. Ying, Y.-W. Zhu, X.-Z. Fu, R. Sun, C.-P. Wong, Amorphous Ni(OH)<sub>2</sub> encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis, Nano Energy 44 (2018) 7-14.

[11] M. Wang, M. Li, Y. Zhao, N. Shi, H. Zhang, Y. Zhao, Y. Zhang, H. Zhang, W. Wang, K. Sun, Y. Pan, S. Liu, H. Zhu, W. Guo, Y. Li, Y. Liu, C. Liu, Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range, J. Energy Chem. 67 (2022) 147-156.