Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn₂S₄ via modulation of H adsorption kinetics for sacrificial-free photocatalytic hydrogen evolution from pure water and seawater

Boon-Junn Ng,^a Wei-Kean Chong,^a Lutfi Kurnianditia Putri,^a Xin Ying Kong,^b Jingxiang Low,^{a,c} Hing Wah Lee,^d Lling-Lling Tan,^a Wei Sea Chang,^e Siang-Piao Chai^{a,*}

Element	Amount (mg/L)	Element	Amount (mg/L)
Chloride	19230	Silicon	< 0.05
Sodium	10610	Iron	0.012
Sulfate	2485	Copper	0.0003
Magnesium	1390	Nickel	< 0.015
Potassium	398	Zinc	0.008
Calcium	409	Manganese	0.01
Carbonate	179	Molybdenum	0.01
Strontium	10	Cobalt	0.0004
Boron	7.6	Vanadium	< 0.015
Bromide	20	Selenium	< 0.019
Iodide	0.05	Rubidium	0.115
Lithium	0.26	Barium	< 0.05

 Table S1. Composition of the artificial seawater.

Fig. S1 Morphology and composition of pristine ZIS. (a) FESEM image and corresponding (b) false colored and (c) EDX elemental mapping of pristine ZIS (scale bar: 2 μm).

Entry	Sample	P Atomic Percentage (at %)
1	ZIS-P100	3.08
2	ZIS-P200	6.97
3	ZIS-P300	10.89

 Table S2. Analytical data of energy-dispersive X-ray (EDX) spectroscopy of the P-doped samples.

Fig. S2 AFM analysis. AFM image and corresponding height profile of ZIS (scale bar: 1 µm).

Fig. S3 XRD analysis. Enlarged XRD peaks showing (102) and (110) crystal planes of the respective samples.

Fig. S4 XPS analysis. Full XPS spectra of ZIS and ZIS-P200.

Fig. S5 XPS analysis on the effect of P content. (a) Zn 2p, (b) In 3d and (c) S 2p XPS spectra of ZIS-P100 and ZIS-P300. (d) P 2p XPS spectra of ZIS-P100, ZIS-P200 and ZIS-P300.

Entry	Sample	Atomic Ratio (Normalized to Zn = 1)			
		Zn	In	S	
1	ZIS	1	2.13	3.94	
2	ZIS-P200	1	2.19	3.30	

Table S3. Relative atomic ratio of ZIS and ZIS-P200 measured by XPS.

Fig. S6 Photocatalytic performance on pure water and seawater splitting. Time dependence of •OH trapping PL spectra for ZIS-P200 in (a) pure water and (b) 0.5 M NaCl under visible light irradiation. (c) Time courses of H_2 evolution and (d) corresponding H_2 yield of ZIS and ZIS-P200 in pure water, 0.5 M NaCl and artificial seawater under visible light irradiation.

Table S4. Comparison of photocatalytic HER performance from pure water and simulated seawater for single-component photocatalysts.

Photocatalyst	Co-catalyst	Reaction Condition	Performance	Ref.
ZIS-P200	-	DI water (60 mL);	H ₂ : 1.68 µmol h ⁻¹	This
		350 W Xe lamp	AQY: 0.16% (420 nm)	work
		$(\lambda > 400 \text{ nm})$		
Ni-doped	-	DI water (45 mL);	H ₂ : 0.86 µmol h ⁻¹	[S1]
$ZnIn_2S_4$		300 W Xe lamp		
		(AM 1.5)		

P-doped	-	DI water (120 mL);	H ₂ : 0.97 μmol h ⁻¹	[S2]
$Zn_{0.5}Cd_{0.5}S_{1-x}$		500 W Xe lamp (λ > 400 nm)	AQY: 0.15% (420 nm)	
CdS	CoP and WS ₂	DI water (100 mL); 300 W Xe lamp (λ > 420 nm)	H ₂ : 0.46 μmol h ⁻¹	[S3]
P-doped CdS	СоР	DI water (20 mL); 3 × 30 W LED lamp (λ > 420 nm)	H ₂ : 1.16 μmol h ⁻¹	[S4]
ZIS-P200	-	0.5 M NaCl (60 mL); 350 W Xe lamp (λ > 400 nm)	H ₂ : 1.54 μmol h ⁻¹	This work
WO ₂ - Na _x WO ₃ hybrid conductor	-	0.2 M phosphate- buffered saline (pH = 6) (10 mL); 1000 W Xe lamp (Full spectrum)	H ₂ : ~0.20 μmol h ⁻¹	[85]
Nano TiO ₂	CuO	3.5% NaCl (45 mL); 300 W Xe lamp (Full spectrum)	H ₂ : 0.31 μmol h ⁻¹	[S6]
ZIS-P200	Ru	0.5 M NaCl (60 mL); 350 W Xe lamp (λ > 400 nm)	H ₂ : 3.43 μmol h ⁻¹	This work
CdS	CoS	0.55 M NaCl with 0.2 M Na ₂ S/Na ₂ SO ₃ (6 mL); Visible light $(\lambda > 420 \text{ nm})$	H ₂ : 1.43 μmol h ⁻¹	[S7]

Fig. S7 Photocatalytic performance under full spectrum irradiation. (a) Time courses of H_2 evolution and (b) corresponding H_2 yield of ZIS and ZIS-P200 in pure water and 0.5 M NaCl under full spectrum irradiation. Recycling runs of photocatalytic H_2 evolution for ZIS-P200 in (c) pure water and (d) 0.5 M NaCl under visible light irradiation.

Fig. S8 Photocatalytic stability analysis. (a) Representative TEM image of ZIS-P200 after three repeated photocatalytic cycles in pure water. (b) XRD patterns, (c) S 2p and (d) P 2p XPS spectra of ZIS-P200 before and after three repeated photocatalytic cycles in pure water and simulated seawater.

Sample	Atomic Ratio (Normalized to Zn = 1)			
	Zn	In	S	Р
Before reaction	1	2.19	3.30	0.50
After reaction in pure water	1	2.07	3.06	0.47
After reaction in simulated	1	2.00	2.96	0.43
seawater				

Table S5. Relative atomic ratio of ZIS-P200 before and after three repeated photocatalytic cycles in pure water and simulated seawater measured by XPS.

Fig. S9 Backward reaction testing. Time courses of H_2 evolution of ZIS-P200 in pure water under visible light irradiation and dark condition.

Fig. S10 Photoluminescence analysis. (a) Steady-state PL spectra and (b) time-resolved PL decay curves of (i) ZIS and (ii) ZIS-P200.

References

- [S1] Shi, X.; Mao, L.; Dai, C.; Yang, P.; Zhang, J.; Dong, F.; Zheng, L.; Fujitsuka, M.; Zheng, H., Inert basal plane activation of two-dimensional ZnIn₂S₄ via Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. *J. Mater. Chem. A* 2020, 8 (26), 13376-13384.
- [S2] Ng, B.-J.; Putri, L. K.; Kong, X. Y.; Pasbakhsh, P.; Chai, S.-P., Overall pure water splitting using one-dimensional P-doped twinned Zn_{0.5}Cd_{0.5}S_{1-x} nanorods via synergetic combination of long-range ordered homojunctions and interstitial S vacancies with prolonged carrier lifetime. *Appl. Catal. B* 2020, *262*, 118309.
- [S3] Zhong, Y.; Wu, Y.; Chang, B.; Ai, Z.; Zhang, K.; Shao, Y.; Zhang, L.; Hao, X., A CoP/CdS/WS₂ p-n-n tandem heterostructure: a novel photocatalyst for hydrogen evolution without using sacrificial agents. J. Mater. Chem. A 2019, 7 (24), 14638-14645.
- [S4] Shi, R.; Ye, H.-F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y.; Lin, Z.; Fu, W.-F.; Che, C.-M.; Chen, Y., Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. *Adv. Mater.* 2018, *30*, 1705941.
- [S5] Cui, G.; Wang, W.; Ma, M.; Xie, J.; Shi, X.; Deng, N.; Xin, J.; Tang, B., IR-driven ohotocatalytic water splitting with WO₂-Na_xWO₃ hybrid conductor material. *Nano Lett.* 2015, *15* (11), 7199-7203.
- [S6] Simamora, A. J.; Hsiung, T. L.; Chang, F. C.; Yang, T. C.; Liao, C. Y.; Wang, H. P., Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO₂. *Int. J. Hydrogen Energy* **2012**, *37* (18), 13855-13858.
- [S7] Liu, S.; Ma, Y.; Chi, D.; Sun, Y.; Chen, Q.; Zhang, J.; He, Z.; He, L.; Zhang, K.; Liu, B., Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater. *Int. J. Hydrogen Energy* 2022, 47 (15), 9220-9229.