In situ moulded Troilite 2H phase Fe S ultrathin electrodes via Pulsed Laser Deposition for Flexible Solid State High Capacity Supercapacitor besides boosted electrocatalytic oxygen evolution

reaction

Ramasamy Velmurugan^{a,b,#}, Dekshinamoorthy Amuthan^{a,b,#}, Vijayaraghavan Saranyan^{a,b,*}, Balasubramanian Subramanian^{a,b,*}

^aCSIR- Central Electrochemical Research Institute, Karaikudi- 630 003, Tamil Nadu, India.
 ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201 002, India.
 [#]Authors contributed equally

*Corresponding Author: <u>saranyan@cecri.res.in (Vijayaraghavan Saranyan),</u> <u>bsmanian@cecri.res.in</u> (Balasubramanian Subramanian)

Formulae for Evaluation of capacitances, capacities, energy and power densities

Areal and Volumetric capacitances with respect to Scan rates

$$C_{(A)} = \frac{i \oint dV}{A \vartheta \Delta V} \left(\frac{mF}{cm^2}\right)$$
(1)

$$C_{(V)} = \frac{i \oint dV}{V \vartheta \Delta V} \left(\frac{F}{cm^3}\right)$$
(2)

Areal and Volumetric capacitances with respect to Current density rates

$$C_{(Vol)} = \frac{I \oint dt}{V \Delta V} \left(\frac{F}{cm^3}\right) \dots (4)$$

Volumetric capacity with respect to Current density rates

Volumetric specific Energy

$$E_V = \frac{C_{DV}}{3.6} \left(\frac{mWh}{cm^3}\right)$$
(6)

Volumetric specific Power

$$P_V = \frac{E}{dt} \times 3.6 \, \left(\frac{W}{cm^3}\right) \, \dots \, (7)$$

Figure S1: (a-c) FESEM morphologies of FeS thin film RT; (d) EDAX spectrum of FeS thin film RT

Figure S2: AFM 2D and 3D topographical images of FeS thin films RT and A650.

Figure S3 :(a& b) STM 2D and 3D atomic resolution images; (c) surface profile.

Figure S4: FESEM cross sectional image.

Figure S5: (a) AFM 2D topographical images of cross section measurement; (b) Thickness profile.

Figure S6: Thickness profilometer profile.

Figure S7: (a) TEM morphology of FeS RT (inset: SAED); (b) lattice fringes (inset: d-space profile).

Figure S8: (a) Selected SAED area of TEM image of FeS A650 nano particles; (b) TEM image of FeS A650 other selected area; (c) SAED pattern of FeS A650 nano particles.

Figure S9: (a) Specific areal capacitance & Volumetric capacitance vs sweep rate of FeS thin film electrode RT; (b)Specific discharge areal capacitance & volumetric capacitance vs current rate of FeS thin film electrode RT.

Figure S10: Electrochemical analysis of full cell (RT) (a) CV profile of FeS thin film symmetric device (RT) at scan rate of 10 to 100 mV s⁻¹; (b) GCD profile of FeS thin film symmetric device (RT) at varying current density range; (c) CV profile comparison for FeS thin film symmetric devices RT and cell-A650 at a scan rate 50 mV s⁻¹.

Figure S11: (a) CV curve of FeS symmetric device (A650) at low scan rates (0.5 to 10 mVs⁻¹); (b) Specific volumetric capacitance and areal capacitance vs scan rate.

Figure S12: Electrochemical characterization of FeS Symmetric device RT (a) Specific volumetric and areal capacitance vs scan rate; (b) Specific volumetric capacitance vs current density.

Figure S13: Slope (scan rare vs peak current) measurement curve from CV curve of FeS cell A650.

Figure S14: (a-d) CV curve comparison of contribution of diffusion and capacitive at 0.5, 5, 50 and 100 mVs⁻¹.

Figure S15: (a) Areal capacity profile of FeS (cell A650) device with respect to current density ranges; (b-i) Areal capacity profiles of 5 cycles at current densities from 1 mA cm⁻²to 8 mA cm⁻².

Figure S16: EIS comparison of both thin film supercapacitor devices FeS cell RT and Cell A-650.

Figure S17: (a) LSV comparison of commercial RuO₂, FeS RT and FeS A650 acquired at 10 mV s⁻¹ in an alkaline 1 M KOH medium.

Figure S18: CV curves at various scan rates; (a) Bare NF; (b) FeS RT; (c) Fes A650; (d) FeS RT after 1000 cycles; (e) FeS A650 after 1000 cycles.

Figure S19: (a) LSV of FeS RT and FeS A650 thin film electrode comparison in O_2 saturated in alkaline 1M KOH medium;(b) LSV curve showing the HER response of bare Ni foam, FeS RT and FeS A650 electrodes in alkaline 1M KOH medium.

Figure S20: Post study analysis(Ex-situ) of FeS (A650) thin film (a) XPS deconvoluted spectra of Fe 2p; (b)XPS deconvoluted spectra of S 2p; (c) K 2p; (d) Survey spectrum comparision of pristine and after stability; (e& f) FESEM morphologies of FeS thin film after stability at 5 KX and 175 KX; (g& h) TEM morphologies (inset: FFT image); (i) d- spacing (inset: d-spacing profile spectrum); (j-1)HRTEM-EDS mapping for F,S and K.

	Element	Weight%	Atomic%		
	S K	1.06	1.90		
	КК	28.48	36.62		
	Fe K	26.19	23.57		
	Ni K	44.28	37.91		
	Totals	100.00			
			P		
1 2 3	4 5	6 7 8	9 10		
Full Scale 37745 cts Cursor: 0.000 keV					

Figure S21: EDAX spectrum of FeS (cell A650) electrode after stability analysis.

Table S1: The electrochemical stability of the volumetric capacitancecomparison study of symmetric supercapacitor based reported literature

Material &	Method	Electrolyte	Volumetric	Specific	Specific	Stability	Ref
Configuration		&	capacitance	Energy	Power	&	
		Voltage		density	density	Retention	
		window					
SWNT)/nitroge	Hydro-	PVA/H ₃ PO ₄	300 F cm ⁻³	6.3 mWh	1,085	10,000	20
n-doped rGO	thermal	1.0V		cm ⁻³	mW cm ⁻³	93%	
Symmetric	synthesis						
Co(OH) ₂ /rGO	Hydro-	PVA/KOH	39 F cm ⁻³	20	56 mW	2000	21
Symmetric	thermal	0–1.4 V		mWh cm ⁻³	cm ⁻³	99.35%	
	synthesis						
Co ₃ O ₄	E-beam	LiPON	37 (±2) F	8 (±2)	16 (±2) W	30000	22
Symmetric	evaporation	2 V,	cm ⁻³	mWh cm ⁻³	cm ⁻³		
RGO/Ag/Fe ₂ O ₃	SILAR	PVA-LiCl	18.2 F cm ⁻³	3.65 mWh	290.3	10000	23
FSS		1.2V		cm ⁻³	mW cm ⁻³	100%	
Symmetric							
MnO ₂ /Au NSP	Anodization	PVA/H ₃ PO ₄	20.35 F cm ⁻³	1.75 mWh	13.46 W	5000	24
Symmetric		1.0V		cm ⁻³	cm ⁻³	87.5%	
rGO-TiO ₂	Vacuum	PVA/KOH	237 F cm ⁻³	16 mWh	1.8 W cm ⁻	4000	25
Symmetric	filtration	0.8V		cm ⁻³	3		
MnO ₂ spheres	Hydro-	PVA-	81 F cm ⁻³	6.6 mWh	549 mW	6000	26
Symmetric	thermal	BMIMC1-		cm ⁻³	cm ⁻³	91.5%	
	synthesis	Li ₂ SO ₄					
		1.5V					
				14.95	6.4	14000	This
FeS	PLD	PVA-KOH	841 F cm ⁻³	mWh cm ³	W cm ⁻³	90%	work
Symmetry		1.6 V					

Table S2: The electrochemical stability of the areal capacitance comparison

 study of symmetric supercapacitor based reported literature

Materials&	Method	Voltage	Specific	Stability	Ref
Configuration		window &	indow & capacitance		
		Electrolyte	(Areal)		
CrN	DC	$0.5 \text{ M H}_2 \text{SO}_4$	12.8	20 000	27
Symmetric	magnetron	0.8V	mF cm ⁻²	92.1%	
	sputtering				
V ₂ O ₅	Thermal	PVA-KOH	9.7	30000	28
Symmetric	Evaporation	1.0V	mF cm ⁻²	95%	
VN	Chemical	1 M KOH	60	15,000	29
Symmetric	Solution	0.8 V	mF cm ⁻²	91.2%	
	Deposition				
	(CSD)				
Ni(OH) ₂	Electro-	6 M KOH	235	20,000	30
Symmetric	deposition	0.4V	mF cm ⁻²		
KF@PPy/f-CNT	Synthesis	PVA/H ₂ SO ₄	258	2500	31
Symmetric		- 0.2 to +0.8 V	mF cm-2	97.4%	
FeOOH@MnO ₂	Hydro-	PVA-LiClO ₄	252	2000	32
Symmetric	thermal	1.0V	mF cm ⁻²	99.5%	
	Synthesis				
MoO ₃ /GO/MWC	Electro-	PVA/H ₃ PO ₄	103	2000	33
NTs	deposition	2.5 V	mF cm ⁻²	86.8%	
Symmetric					
PPy:PSS	Co-	1 M KOH	175.3	5000	34
Symmetric	precipitation	0 to 1.0 V	mF cm ⁻²	86.3%	
	method				
V ₂ O ₅	sol-gel	BMIMBF ₄ -	310	2000	35
Symmetric		LiClO ₄	mF cm ⁻²	65%	
		2.0 to þ2.0 V			
MnO ₂ /CNT	Spinning	CMC-LiClO ₄	135	10,000	36
Symmetric	method	1.2V	mF cm ⁻²	86%	
Fe ₂ O ₃	Synthesis	PVA/PAAS/KO	3.3	5000	37
Symmetric		Н	mF cm ⁻²	85.6%	
		1.2 V			
FaS	ргр	DVA KOH	120.6	14000	This work
Symmetric		1 6V	mF cm ⁻²	90%	
Symmetric		1.0 7		120/0	1

Table S3: State of art of the thin film based electro catalytic materials and theirOER performance characteristics with other reported literature

Catalyst	Synthesis Method	Medium	Overpotential @ 10mA cm ⁻²	Tafel (mV/dec)	Substrate	Ref.
A-MnS	Hydrothermal and Anion Exchange	1 М КОН	292 mV	70	Stainless Steel	38
NiSe ₂ @MoS ₂	Electrodeposition and Hydrothermal	1 M KOH	267 mV	85	Carbon Fiber Paper	39
MoS ₂	Atomic layer Deposition	1 M KOH	273mV	61	Carbon Fiber Paper	40
Ni _{0.88} Co _{1.22} Se ₄	Two step reflux method	1 М КОН	320mV	78	FTO	41
NiS	Hot Injection Method	1 М КОН	300mV		Ni Foam	42
NiS@Ni Foam	Aerosol assisted Chemical Vapor Deposition	1 М КОН	300mV	81.3	Ni Foam	43
Co ₉ S ₈ Holoow Sphere	Solvothermal	1 M KOH	285mV	58	Glassy Carbon	44
Ni _x Co _{3-x} S ₄	Hot Injection Method	1 M KOH	327mV	89	Ni Foam	45
NiFeCo-S/C	Wet chemical and Annealing	1 M KOH	271mV	45.4	Rotating Disk Glassy carbon	46
Metallic Ni ₂ S ₃ film	Atomic Layer Deposition	1 М КОН	400mV	51	Au on Si/SiO ₂	47
CoFe/(OH) _x	SILAR	1 М КОН	275mV	34	Copper	48
CoS	Hydrothermal	1 М КОН	383mV	38	Glassy Carbon	49
FeS	PLD	1М КОН	263mV	48	Ni Foam	This Work

References:

- [1] Y. W. Lee, B. S. Kim, J. Hong, H. Choi, H. S. Jang, B. Hou, S. Pak, J. Lee, S. H. Lee, S. M. Morris, D. Whang, J. P. Hong, H. S. Shin, S. N. Cha, J. I. Sohn, J. M. Kim, *Nano Energy* 2017, *37*, 15.
- T. M. Higgins, S. Finn, M. Matthiesen, S. Grieger, K. Synnatschke, M. Brohmann, M. Rother, C. Backes, J. Zaumseil, *Adv. Funct. Mater.* 2019, 29, DOI 10.1002/adfm.201804387.
- [3] N. Li, T. Lv, Y. Yao, H. Li, K. Liu, T. Chen, J. Mater. Chem. A 2017, 5, 3267.
- [4] D. Ranjith Kumar, S. Kesavan, M. L. Baynosa, J. J. Shim, *Appl. Surf. Sci.* 2018, 448, 547.
- [5] G. Yilmaz, X. Lu, *ChemNanoMat* **2016**, *2*, 719.
- [6] C. Yang, N. Hu, W. Wang, B. Cao, J. Power Sources 2018, 399, 115.
- [7] P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang, J. Mater. Chem. A 2014, 2, 14413.
- [8] M. Yao, Y. Chen, Z. Wang, C. Shao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, *Chem. Eng. J.* 2020, 395, 124057.
- [9] C. Yang, L. Zhang, N. Hu, Z. Yang, Y. Su, S. Xu, M. Li, L. Yao, M. Hong, Y. Zhang, *Chem. Eng. J.* 2017, 309, 89.
- [10] L. Yao, C. Zhou, N. Hu, J. Hu, M. Hong, L. Zhang, Y. Zhang, Appl. Surf.

Sci. 2018, 435, 699.

- [11] P. Apelgren, M. Amoroso, K. Säljö, M. Montelius, A. Lindahl, L. Stridh Orrhult, , *Mater. Today Proc.* 2019, 27, 0.
- [12] H. Han, J. S. Lee, S. Cho, *Polymers (Basel)*. 2019, 11, 3.
- [13] Y. Tian, C. Yang, W. Que, X. Liu, X. Yin, L. B. Kong, *J. Power Sources* 2017, 359, 332.
- [14] Y. Bu, M. Cao, Y. Jiang, L. Gao, Z. Shi, X. Xiao, M. Wang, G. Yang, Y. Zhou, Y. Shen, *Electrochim. Acta* 2018, 271, 624.
- [15] X. Wang, H. Huang, F. Zhou, P. Das, P. Wen, S. Zheng, P. Lu, Y. Yu, Z.
 S. Wu, *Nano Energy* 2021, *82*, 105688.
- [16] M. A. Spencer, O. Yildiz, I. Kamboj, P. D. Bradford, V. Augustyn, Energy and Fuels 2021, 35, 16183.
- [17] X. Li, T. Gao, Q. Liu, Y. Xu, J. Li, D. Xiao, *Mater. Chem. Front.* 2021, 5, 3636.
- [18] J. K. Kim, J. Scheers, H. S. Ryu, J. H. Ahn, T. H. Nam, K. W. Kim, H. J. Ahn, G. B. Cho, P. Jacobsson, J. Mater. Chem. A 2014, 2, 1774.
- [19] K. Song, X. Wang, J. Wang, B. Zhang, C. Zuo, *ChemElectroChem* 2018, 5, 1297.
- [20] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen,

Nat. Nanotechnol. 2014, 9, 555.

- [21] Y. Rong, Y. Chen, J. Zheng, Y. Zhao, Q. Li, *J. Colloid Interface Sci.* 2021, 598,
- [22] T. Göhlert, P. F. Siles, T. Päßler, R. Sommer, S. Baunack, S. Oswald, O. G. Schmidt, *Nano Energy* 2017, *33*, 387.
- [23] Z. Zou, W. Xiao, Y. Zhang, H. Yu, W. Zhou, Appl. Surf. Sci. 2020, 500, 144244.
- [24] Y. Gao, H. Jin, Q. Lin, X. Li, M. M. Tavakoli, S. F. Leung, W. M. Tang,
 L. Zhou, H. L. Wa Chan, Z. Fan, J. Mater. Chem. A 2015, 3, 10199.
- [25] J. Du, C. Zheng, W. Lv, Y. Deng, Z. Pan, F. Kang, Q. H. Yang, Adv. Mater. Interfaces 2017, 4, 1.
- [26] J. Zhi, O. Reiser, Y. Wang, A. Hu, Nanoscale 2016, 8, 11976.
- [27] B. Wei, H. Liang, D. Zhang, Z. Wu, Z. Qi, Z. Wang, J. Mater. Chem. A 2017, 5, 2844.
- [28] R. Velmurugan, J. Premkumar, R. Pitchai, M. Ulaganathan, B. Subramanian, ACS Sustain. Chem. Eng. 2019, 7, 13115.
- [29] Z. Q. Wu, B. B. Yang, H. Li, H. Y. Tong, X. Wang, C. D. Li, L. L. Zhu,
 R. H. Wei, L. Hu, C. H. Liang, X. B. Zhu, Y. P. Sun, *J. Power Sources* 2021, 507, DOI 10.1016/j.jpowsour.2021.230269.

- [30] A. Pimsawat, A. Tangtrakarn, N. Pimsawat, S. Daengsakul, *Sci. Rep.***2019**, *9*, 1.
- [31] J. P. Jyothibasu, R. H. Lee, *Polymers (Basel)*. 2018, 10, 6.
- [32] R. B. Pujari, S. J. Patil, J. Park, A. Shanmugasundaram, D. W. Lee, J. Power Sources 2019, 436, 226826.
- [33] M. Faraji, A. Abedini, Int. J. Hydrogen Energy 2019, 44, 2741.
- [34] X. Jing, Y. Zhang, H. Jiang, Y. Cheng, N. Xing, C. Meng, J. Alloys Compd. 2018, 763, 180.
- [35] F. Azadian, A. C. Rastogi, *Electrochim. Acta* 2020, 330, 135339.
- [36] B. Patil, S. Ahn, C. Park, H. Song, Y. Jeong, H. Ahn, *Energy* 2018, 142, 608.
- [37] S. Peng, L. Yu, P. Kakvand, M. S. Rahmanifar, G. Zhang, M. Kong, J. Zhu, S. Tang, R. Ren, M. S. Faber, Z. Li, X. Yu, F. Su, M. Miao, n.d.
- [38] R. B. Pujari, G. S. Gund, S. J. Patil, H. S. Park, D. W. Lee, J. Mater. Chem. A 2020, 8, 3901.
- [39] S. Liu, B. Li, S. V. Mohite, P. Devaraji, L. Mao, R. Xing, Int. J. Hydrogen Energy 2020, 45, 29929.
- [40] S. Materials, S. D. B. K. Sharma, A. Stoesser, S. K. Mondal, S. K. Garlapati, M. H. Faway, V. S. K.Chakravadhanula, R. Kruk, H. Hahn,

ACS Appl. Mater. Interfaces 2018, 10, 0.

- [41] D. V. Shinde, L. De Trizio, Z. Dang, M. Prato, R. Gaspari, L. Manna, *Chem. Mater.* 2017, 29, 7032.
- [42] G. E. Ayom, M. D. Khan, T. Ingsel, W. Lin, R. K. Gupta, S. J. Zamisa, W.
 E. van Zyl, N. Revaprasadu, *Chem. A Eur. J.* 2020, *26*, 2693.
- [43] M. A. Ehsan, A. Rehman, A. Afzal, A. Ali, A. S. Hakeem, U. A. Akbar, N. Iqbal, *Energy and Fuels* 2021, 35, 16054.
- [44] X. Feng, Q. Jiao, T. Liu, Q. Li, M. Yin, Y. Zhao, H. Li, C. Feng, W. Zhou, ACS Sustain. Chem. Eng. 2018, 6, 1863.
- [45] C. Gervas, M. D. Khan, C. Zhang, C. Zhao, R. K. Gupta, E. Carleschi, B.P. Doyle, N. Revaprasadu, *RSC Adv.* 2018, *8*, 24049.
- [46] M. H. Han, M. W. Pin, J. H. Koh, J. H. Park, J. Kim, B. K. Min, W. H. Lee, H. S. Oh, J. Mater. Chem. A 2021, 9, 27034.
- [47] T. A. Ho, C. Bae, H. Nam, E. Kim, S. Y. Lee, J. H. Park, H. Shin, ACS Appl. Mater. Interfaces 2018, 10, 12807.
- [48] S. Liu, B. Liu, C. Gong, Z. Li, Appl. Surf. Sci. 2019, 478, 615.
- [49] W. Adamson, C. Jia, Y. Li, C. Zhao, *Electrochim. Acta* 2020, 355, 136802.