Electronic Supplementary Information

Highly proton conductive and stable sulfonated poly(arylene-

alkane) for fuel cells with performance over 2.46 W cm⁻²

Wenhao Li,^{abc} Run Zhang,^{bc} Xiaoyu Zhao,^{bc} Zhouying Yue,^b Huidong Qian*^{bc} and Hui Yang*^{ab}

^aSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

^bShanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding Authors: qianhd@sari.ac.cn; yangh@sari.ac.cn

Table of Contents

Fig. S1-2. Digital photographs of Poly(FL50-BP50)-SO ₃ H ionomer in Et	OH and
corresponding CCM	P2-3
Fig. S3-5 ¹ H NMR spectra of other polymers	P4-6
Fig. S6-8. FT-IR spectra of other polymers	P7-9
Fig. S9. Arrhenius plots of proton conductivity	P10
Fig. S10. Stress-strain curves of Poly(FLx-BPy)-SO ₃ H	P11
Fig. S11. SEM images of the surface of Poly(FLx-BPy)-SO ₃ H	P12
Fig. S12. Mass activities of Poly(FLx-BPy)-SO ₃ H based MEA	P13
Fig. S13. ¹ H and ¹⁹ F NMR spectra of Poly(FL50-BP50)-SO ₃ H before a	nd after
durability test	P14
Table S1-2. OCVs and fuel cell performance of Poly(FLx-BPy)-SO ₃ H	P15

Fig. S1 Digital photograph of Poly(FL50-BP50)-SO₃H ionomer in EtOH.

Fig. S3 ¹H NMR spectra of a) Poly(FL30-BP70)-Br and Poly(FL30-BP70)-SAc in CDCl₃, and b) Poly(FL30-BP70)-SO₃H in DMSO-d₆.

Fig. S4 ¹H NMR spectra of a) Poly(FL40-BP60)-Br and Poly(FL40-BP60)-SAc in CDCl₃, and b) Poly(FL40-BP60)-SO₃H in DMSO-d₆.

Fig. S5 ¹H NMR spectra of a) Poly(FL60-BP40)-Br and Poly(FL60-BP40)-SAc in CDCl₃, and b) Poly(FL60-BP40)-SO₃H in DMSO-d₆.

Fig. S6 FT-IR spectra of Poly(FL30-BP70)-Br, Poly(FL30-BP70)-SAc and Poly(FL30-BP70)-SO₃H.

Fig. S7 FT-IR spectra of Poly(FL40-BP60)-Br, Poly(FL40-BP60)-SAc and Poly(FL40-BP60)-SO₃H.

Fig. S8 FT-IR spectra of Poly(FL60-BP40)-Br, Poly(FL60-BP40)-SAc and Poly(FL60-BP40)-SO₃H.

Fig. S9 Arrhenius plots of proton conductivity.

Fig. S10 Stress-strain curves of Poly(FLx-BPy)-SO₃H membranes at ambient with a speed of 1 mm min⁻¹.

Fig. S11 SEM images of the surface of Poly(FLx-BPy)-SO₃H membranes.

Fig. S12 Mass activities of Poly(FLx-BPy)-SO₃H based MEA at 0.9 V under H_2/air and H_2/O_2 fuel cell operations.

Fig. S13 a) ¹H NMR spectra and b) ¹⁹F NMR spectra of Poly(FL50-BP50)-SO₃H before and after durability test in DMSO-d₆.

Sample	OCV for H_2 /air / V	OCV for $H_2/O_2 / V$
Polv(FL30-BP70)-SO₃H	0.967	1.016
Poly(FL40-BP60)-SO ₃ H	0.970	1.017
Poly(FL50-BP50)-SO₃H	0.987	1.036
Poly(FL60-BP40)-SO₃H	0.973	1.020
Nafion 212	0.957	1.013

Table S1 Open-circuit voltages for $\rm H_2/air$ and $\rm H_2/O_2$ fuel cell operations

Table S2 Comparison of Fuel cell performance of Poly(FLx-BPy)-SO₃H and partial

Sample	Temp / °C	RH / %	Gas	Power density	Current density	Durability / h	Reference
				/ mW cm ⁻²	/ mA cm ⁻²		
Poly(FL30-BP70)-SO ₃ H	80	100	H_2/O_2	1668	_	_	This work
Poly(FL40-BP60)-SO₃H	80	100	H_2/O_2	1915	500	400	This work
Poly(FL50-BP50)-SO₃H	80	100	H_2/O_2	2465	_	_	This work
Poly(FL60-BP40)-SO ₃ H	80	100	H_2/O_2	2242	—	—	This work
SP-BNP-10	80	100	H_2/O_2	1790	—	—	[1]
SPEEK74-O-PA100	65	100	H_2/O_2	1358	400	50	[2]
B2SP	70	65	H_2/O_2	2140	200	72	[3]
CSP-1	70	65	H_2/O_2	1660	200	72	[4]
MM40-PC	80	80	H_2/O_2	975	—	960 (0.7 V)	[5]
CFC-1.12	90	30	H_2/O_2	159	—	80 (OCV)	[6]
MM45-PC	95	100	H_2/O_2	1107	—	768 (0.7 V)	[7]
SPX-BP-0.95	80	100	H_2/O_2	370	—	—	[8]
C-SPAES-7	80	95	H₂/air	692	—	—	[9]
SI-PPBP 40	70	100	H₂/air	650	—	—	[10]
BPAEK25- SDPA	80	100	H_2/O_2	470	—	—	[11]
SPAEK/PSSAMA-20	80	30	H_2/O_2	450	200	100	[12]
SPAEK X9.1Y8.8	60	100	H_2/O_2	324	—	—	[13]
ALSPI-5	80	100	H_2/O_2	932	—	—	[14]
M10N5-CR	80	95	H_2/O_2	1070	500	24 (OCV) + 144	[15]
SPFAE-ODP	80	80	H_2/O_2	679	—	—	[16]
Me-m-SPEEKK	80	100	H_2/O_2	657	—	—	[17]
mSPAE	80	100	H_2/O_2	928	—	120 (OCV)	[18]
A2:1-SCNT	25	_	H ₂ /air	129	318	120	[19]
1,5-DHN (2.2)	80	100	H₂/air	384	_	_	[20]

membranes reported in recent years

References

Q. Liu, X. Li, S. Zhang, Z. Wang, Y. Chen, S. Zhou, C. Wang, K. Wu, J. Liu, Q. Mao, X. Jian, *J. Membr. Sci.*, 2022, 641, 119926.

[2] W. Li, J. Jiang, H. An, S. Dong, Z. Yue, H. Qian, H. Yang, ACS Appl. Energy Mater., 2021, 4, 2732-2740.

- [3] D. Yuan, Y. Qin, S. Li, S. Du, Y. Xu, Q. Weng, P. Chen, X. Chen, Z. An, J. Membr. Sci., 2021, 621, 118932.
- [4] D. Yuan, Y. Qin, S. Li, S. Du, Y. Xu, Q. Weng, P. Chen, X. Chen, Z. An, J. Power Sources, 2021, 484, 229265.
- [5] X. Liu, J. Zhang, C. Zheng, J. Xue, T. Huang, Y. Yin, Y. Qin, K. Jiao, Q. Du, M.
 D. Guiver, *Energy Environ. Sci.*, 2020, 13, 297-309.
- [6] X. Zhang, Y. Li, X. Liu, J. Zhang, Y. Yin, M. D. Guiver, *J. Membr. Sci.*, 2020, 616, 118536.
- [7] X. Liu, Y. Li, J. Xue, W. Zhu, J. Zhang, Y. Yin, Y. Qin, K. Jiao, Q. Du, B. Cheng,X. Zhuang, J. Li, M. D. Guiver, *Nat. Commun.*, 2019, 10, 842.
- [8] P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, F. Sheng, G. Tang, L. Ge, L. Wu, Q. Song, N. B. McKeown, Z. Yang, T. Xu, *Angew. Chem. Int. Ed.*, 2020, **59**, 9564-9573.
- [9] J. Han, K. Kim, J. Kim, S. Kim, S.-W. Choi, H. Lee, J.-j. Kim, T.-H. Kim, Y.-E. Sung, J.-C. Lee, *J. Membr. Sci.*, 2019, **579**, 70-78.
- [10]S. Chandra Sutradhar, M. M. Rahman, F. Ahmed, T. Ryu, I. Jin, S. Yoon, S. Lee,Y. Jin, W. Kim, *J. Power Sources*, 2019, 442, 227233.
- [11]K. Kang, D. Kim, J. Membr. Sci., 2019, 578, 103-110.
- [12]B. B. Munavalli, M. Y. Kariduraganavar, J. Membr. Sci., 2018, 566, 383-395.
- [13]K. H. Lee, J. Y. Chu, A. R. Kim, D. J. Yoo, ACS Appl. Mater. Interfaces, 2018, 10, 20835-20844.
- [14]Z. Yao, Z. Zhang, M. Hu, J. Hou, L. Wu, T. Xu, J. Membr. Sci., 2018, 547, 43-50.
 [15]H. Hu, T. Dong, Y. Sui, N. Li, M. Ueda, L. Wang, X. Zhang, J. Mater. Chem. A, 2018, 6, 3560-3570.

[16] Y. Lu, X. Zhang, X. Yan, Z. Hu, S. Chen, J. Membr. Sci., 2018, 555, 45-55.

[17]H. Zhang, R. J. Stanis, Y. Song, W. Hu, C. J. Cornelius, Q. Shi, B. Liu, M. D. Guiver, J. Power Sources, 2017, 368, 30-37.

[18] T. Yoo, M. A. Aziz, K. Oh, S. Shanmugam, J. Membr. Sci., 2017, 542, 102-109.

[19]S. Gao, H. Xu, T. Luo, Y. Guo, Z. Li, A. Ouadah, Y. Zhang, Z. Zhang, C. Zhu, J. Membr. Sci., 2017, 536, 1-10.

[20]K. H. Lee, D. H. Cho, Y. M. Kim, S. J. Moon, J. F. Kim, Y. M. Lee, *J. Membr. Sci.*, 2017, **535**, 35-44.