Supporting Information

Vacancy controlled n-p conduction type transition in CuAgSe with superior thermoelectric performance

Tian Yu^a, Suiting Ning^a, Tingting Zhang^a, Xiangbin Chen^a, Qian Liu^a, Ning Qi^a,

Zhiquan Chen*^a, Xianli Su^b and Xinfeng Tang^b

^aHubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan

University, Wuhan 430072, China

^bState Key Laboratory of Advanced Technology for Materials Synthesis and

Processing, Wuhan University of Technology, Wuhan 430072, China

E-mail: chenzq@whu.edu.cn

Supplementary Figures

Fig. S1 The calculated band structure of β -CuAgSe.

Fig. S2 SEM images of fracture morphology for (a) (CuAg)_{0.96}Se, (b) CuAgSe, (c) (CuAg)_{1.02}Se, (d) (CuAg)_{1.06}Se.

Fig. S3 Positron lifetime spectra of (CuAg)0.94Se, CuAgSe and (CuAg)1.06Se.

Fig. S4 Positron density distribution in the bulk state of CuAgSe.

Fig. S5 Positron density distribution in the trapping state with various defects in CuAgSe.

Fig. S6 Temperature-dependent conductivity of $(CuAg)_x$ Se (x = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06) after phase transition.

Fig. S7 The temperature-dependent electric transport properties of $Cu_{1.02}AgSe$, $CuAg_{1.02}Se$, CuAgSe, $CuAg_{0.98}AgSe$, $CuAg_{0.98}Se$: (a) conductivity, (b) seebeck coefficient, (c) power factor.

Fig. S8 The average ZT of $(CuAg)_x$ Se (x = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06) of 470 ~ 630 K.

Fig. S9 The chemical composition reproducibility of temperature-dependent electric transport properties of (CuAg)_{0.96}Se (C1 and C2 are sample-1 and sample-2 of different batches): (a) conductivity, (b) seebeck coefficient, (c) power factor; repeated cycle tests (R1, R2, R3) of sample-2: (d) conductivity, (e) seebeck coefficient, (f) power factor.

Fig. S10 The chemical composition reproducibility of temperature-dependent electric transport properties of CuAgSe (C1 and C2 are sample-1 and sample-2 of different batches): (a) conductivity, (b) seebeck coefficient, (c) power factor; repeated cycle tests (R1, R2, R3) of sample-1: (d) conductivity, (e) seebeck coefficient, (f) power factor.

Fig. S11 The chemical composition reproducibility of temperature-dependent electric transport properties of $(CuAg)_{1.02}$ Se (C1 and C2 are sample-1 and sample-2 of different batches): (a) conductivity, (b) seebeck coefficient, (c) power factor; repeated cycle tests (R1, R2, R3) of sample-2: (d) conductivity, (e) seebeck coefficient, (f) power factor.

Fig. S12 Thermogravimetric curve of (CuAg)_xSe from 300 K to 623 K (*x* = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06).

Fig. S13 The CuAg content x dependent lattice thermal conductivity at several different temperatures.

Supplementary Tables

Table S1. Positron lifetime τ_1 and τ_2 , intensity of each lifetime component I_1 and I_2 , average positron lifetime of $(CuAg)_x$ Se (x = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06).

samples	τ_1 (ps)	$ au_2$ (ps)	<i>I</i> ₁ (%)	$I_2(\%)$	Average lifetime (ps)
(CuAg) _{0.94} Se	143	272	13	87	255
(CuAg) _{0.96} Se	171	271	12	88	260
(CuAg) _{0.98} Se	176	272	17	83	262
CuAgSe	179	281	16	84	264
(CuAg) _{1.02} Se	148	289	15	85	267
(CuAg) _{1.04} Se	176	291	22	78	266
(CuAg) _{1.06} Se	159	290	16	84	269

Table S2. The Hall carrier concentration, Hall mobility, effective mass and relaxation time of $(CuAg)_x$ Se (*x*= 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06) at room temperature.

samples	$n_{\rm H}({\rm cm}^{-3})$	$\mu_{\rm H}$ (cm ² V ⁻¹ s ⁻¹)	m*/me	$\tau_{\rm R} (10^{-13}{\rm s})$
(CuAg) _{0.94} Se	-4.47×10 ¹⁸	1714	0.135	1.315
(CuAg) _{0.96} Se	-4.02×10 ¹⁸	1795	0.131	1.343
(CuAg) _{0.98} Se	-4.25×10 ¹⁸	1763	0.142	1.431
CuAgSe	-3.35×10 ¹⁸	2176	0.121	1.504
(CuAg) _{1.02} Se	-5.35×10 ¹⁸	2286	0.125	1.627
(CuAg) _{1.04} Se	-3.88×10 ¹⁸	2094	0.133	1.591
(CuAg) _{1.06} Se	-4.00×10 ¹⁸	2582	0.111	1.636

Table S3. The temperature dependent Hall carrier concentration, hall mobility, effective mass of (a) (CuAg)_{0.96}Se, (b) CuAgSe and (c) (CuAg)_{1.02}Se.

(CuAg) _{0.96} Se	$n_{\rm H}~({\rm cm}^{-3})$	$\mu_{\rm H} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	m*/me
323K	-4.46×10 ¹⁸	1380	0.126
373K	-4.27×10^{18}	841	0.035
423K	-7.69×10 ¹⁸	321	0.082
473K	-1.78×10 ¹⁹	78	0.415
573K	-4.90×10 ²⁰	1.66	4.677
623K	-3.69×10 ²⁰	1.60	4.418
́b)			
(b) CuAgSe	$n_{\rm H} ({\rm cm}^{-3})$	$\mu_{\rm H} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	m*/me
b) CuAgSe 323K	$n_{\rm H} ({\rm cm}^{-3})$ -3.84×10 ¹⁸	μ _H (cm ² V ⁻¹ s ⁻¹) 1569	m*/me 0.116
b) CuAgSe 323K 373K	$n_{\rm H} ({\rm cm}^{-3})$ -3.84×10 ¹⁸ -3.71×10 ¹⁸	μ _H (cm ² V ⁻¹ s ⁻¹) 1569 936	m*/me 0.116 0.035
(b) CuAgSe 323K 373K 423K	$n_{\rm H} ({\rm cm}^{-3})$ -3.84×10^{18} -3.71×10^{18} -6.47×10^{18}	μ _H (cm ² V ⁻¹ s ⁻¹) 1569 936 378	m*/me 0.116 0.035 0.077
(b) CuAgSe 323K 373K 423K 473K	$n_{\rm H} (\rm cm^{-3})$ -3.84×10^{18} -3.71×10^{18} -6.47×10^{18} -1.46×10^{19}	$\mu_{\rm H} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$ 1569 936 378 91	m*/me 0.116 0.035 0.077 0.385
(b) CuAgSe 323K 373K 423K 473K 573K	$n_{\rm H} (\rm cm^{-3})$ -3.84×10^{18} -3.71×10^{18} -6.47×10^{18} -1.46×10^{19} -4.78×10^{20}	μ _H (cm ² V ⁻¹ s ⁻¹) 1569 936 378 91 1.49	m*/me 0.116 0.035 0.077 0.385 4.458

(c)

(CuAg) _{1.02} Se	$n_{\rm H}({\rm cm}^{-3})$	$\mu_{\rm H} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	m*/me
323K	-4.31×10 ¹⁸	2658	0.107
373K	-3.97×10 ¹⁸	2491	0.097
423K	-5.28×10 ¹⁸	1604	0.112
473K	-4.80×10 ¹⁸	170	0.741
573K	-1.05×10 ¹⁸	449	0.089
623K	-1.38×10 ¹⁸	421	0.089

Sample	Density (g/cm ³)
(CuAg) _{0.94} Se	6.89
(CuAg) _{0.96} Se	6.78
(CuAg) _{0.98} Se	6.84
CuAgSe	7.19
(CuAg) _{1.02} Se	7.17
(CuAg) _{1.04} Se	6.94
(CuAg) _{1.06} Se	7.15

Table S4. The density values of $(CuAg)_x$ Se (x = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06).

Table S5. The Lorentz number (a) calculated according to equation (13), (b) obtained by equation: $L = 1.5 + \exp \left[-\frac{|S|}{116}\right]$.

1	~	١
(a)

$L(V^2 K^{-2})$	(CuAg) _{0.96} Se	(CuAg) _{0.98} Se	CuAgSe	(CuAg) _{1.02} Se	(CuAg) _{1.04} Se
303 K	1.92×10 ⁻⁸	1.90×10 ⁻⁸	1.90×10 ⁻⁸	2.02×10 ⁻⁸	1.90×10 ⁻⁸
348 K	1.96×10 ⁻⁸	1.97×10 ⁻⁸	1.97×10 ⁻⁸	1.97×10 ⁻⁸	1.86×10 ⁻⁸
400 K	2.41×10 ⁻⁸	2.41×10 ⁻⁸	2.43×10 ⁻⁸	1.93×10 ⁻⁸	1.84×10 ⁻⁸
450 K	1.91×10 ⁻⁸	1.92×10 ⁻⁸	1.87×10 ⁻⁸	1.91×10 ⁻⁸	1.81×10 ⁻⁸
475 K	1.71×10 ⁻⁸	1.68×10 ⁻⁸	1.70×10 ⁻⁸	1.51×10 ⁻⁸	1.62×10 ⁻⁸
500 K	1.64×10 ⁻⁸	1.64×10 ⁻⁸	1.65×10 ⁻⁸	1.55×10 ⁻⁸	1.88×10 ⁻⁸
523 K	1.65×10 ⁻⁸	1.63×10 ⁻⁸	1.65×10 ⁻⁸	1.57×10 ⁻⁸	2.44×10 ⁻⁸
573 K	1.62×10 ⁻⁸	1.62×10 ⁻⁸	1.63×10 ⁻⁸	1.61×10 ⁻⁸	1.54×10 ⁻⁸
630 K	1.58×10 ⁻⁸	1.58×10 ⁻⁸	1.59×10 ⁻⁸	1.62×10 ⁻⁸	1.58×10 ⁻⁸

$I_{(V^{2}K^{-2})}$	(CuAg) = cSq	$(CuAg)_{a} a_{a} S_{a}$	CuAaSa	$(CuAg)_{i} = S_{i}$	$(CuAg)_{tot} S_{2}$
	(CuAg)0.965C	(CuAg)0.985e	CuAgse	(CuAg)1.025e	(CuAg)1.045C
303 K	1.93×10 ⁻⁸	1.91×10 ⁻⁸	1.91×10 ⁻⁸	2.00×10 ⁻⁸	1.91×10 ⁻⁸
348 K	1.96×10 ⁻⁸	1.97×10 ⁻⁸	1.96×10 ⁻⁸	1.96×10 ⁻⁸	1.88×10 ⁻⁸
400 K	2.36×10 ⁻⁸	2.35×10 ⁻⁸	2.41×10 ⁻⁸	1.94×10 ⁻⁸	1.86×10 ⁻⁸
450 K	1.92×10 ⁻⁸	1.92×10 ⁻⁸	1.89×10 ⁻⁸	1.92×10 ⁻⁸	1.84×10 ⁻⁸
475 K	1.76×10 ⁻⁸	1.74×10 ⁻⁸	1.75×10 ⁻⁸	1.55×10 ⁻⁸	1.68×10 ⁻⁸
500 K	1.69×10 ⁻⁸	1.70×10 ⁻⁸	1.71×10 ⁻⁸	1.60×10 ⁻⁸	1.90×10 ⁻⁸
523 K	1.70×10 ⁻⁸	1.69×10 ⁻⁸	1.71×10 ⁻⁸	1.63×10 ⁻⁸	2.45×10 ⁻⁸
573 K	1.68×10 ⁻⁸	1.68×10 ⁻⁸	1.69×10 ⁻⁸	1.66×10 ⁻⁸	1.59×10 ⁻⁸
630 K	1.64×10 ⁻⁸	1.64×10 ⁻⁸	1.65×10 ⁻⁸	1.68×10 ⁻⁸	1.64×10 ⁻⁸

(b)

Table S6. The grain size of $(CuAg)_x$ Se (x = 0.94, 0.96, 0.98, 1, 1.02, 1.04, 1.06) obtained from XRD diffraction peaks.

Sample	Grain size (nm)
(CuAg) _{0.94} Se	30
(CuAg) _{0.96} Se	26
(CuAg) _{0.98} Se	36
CuAgSe	33
(CuAg) _{1.02} Se	35
(CuAg) _{1.04} Se	25
(CuAg) _{1.06} Se	29