Supporting information

Surface electron modulation of plasmonic semiconductor for enhanced CO₂

photoreduction

Dehua Tian,^a Changhai Lu,^a Xiaowei Shi,^c Haifeng Wu,^a Lu Liu,^a Wenjie Mai,^b Baojun Li,^a

Juan Li,^{a*} and Zaizhu Lou^{a,c*}

^a Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China

^b Department of Physics, Jinan University, Guangzhou, 510632, China

^c State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China

Corresponding author: lijuan@jnu.edu.cn, zzlou@jnu.edu.cn

Fig. S1. TEM images of plasmonic heterostructure BWO-NDs/TO-NSs with different amount of Bi_2WO_6 : 5 (a), 10 (b), 15 (c), 20 (d), 30 (e) and 50% (f), respectively. Their XRD patterns (g) and UV-vis-NIR DRS (h).

Fig. S2. Ti 2p XPS spectra on TiO₂ before and after light irradiation.

Fig. S3. The AFM images of plasmonic Bi_2WO_6 films, 15%-BWO-NDs/TO-NSs film and TiO₂ films.

Fig. S4. The surface potential images of Bi_2WO_6 before and after 15 s light irradiation with time (a1-a6), The surface potential images of TiO_2 before and after 15 s light irradiation with time (b1-b6), Surface potentials (c,d) along the lines marked in (a,b).

Fig. S5. CO generation over TiO₂, Bi₂WO₆, and 15%-BWO-NDs/TO-NSs as photocatalysts during CO₂-RR, respectively, under UV-visible light irradiation.

Fig. S6. CH₄ (a) and CO (b) generation over BWO-NDs/TO-NSs hybrids with 5, 10, 15, 20, 30 and 50 wt% Bi_2WO_6 in composition, respectively. Light source, 300 W Xenon lamp, light density of 200 mW cm⁻².

Fig. S7. Mass spectrometry (MS) spectra of products during CO_2 -RR by using ¹³C-isotope labeled ¹³CO₂ as reactants.

Fig. S8. CO generation rates over 15%-BWO-NDs/TO-NSs under visible (Vis, >420 nm), UV and UV-visible (UV-Vis) light irradiation, respectively.

Fig. S9. UV-vis-NIR DRS changes of plasmonic Bi_2WO_6 (a) and 15%-BWO-NDs/TO-NSs heterostructures (b) after stopping light irradiation.

Fig. S10. DRS (a) of sample 15%-BWO-NDs/TO-NSs-0. Its products during CO₂-RR under UV–vis light irradiation (b). Products generation rates and selectivity (c) over o TiO₂, Bi₂WO₆, 15%-BWO-NDs/TO-NSs and 15%-BWO-NDs/TO-NSs-0.

Fig. S11. XRD patterns (a) and TEM image (b) of 15%-BWO-NDs/TO-NSs samples after three photoreaction cycles.

Fig. S12. Mott-Schottky plots (a) of TiO_2 and plasmonic Bi_2WO_6 measured in a NaOH (1 M; pH 13.6) electrolyte at frequencies 100 Hz. Plots (b) of the transformed Kubelka–Munk functions vs the energy of light.

Photocatalysts	Light source	Reaction medium	Main products and highest yield	Selectivity of CH ₄
Ti ₃ C ₂ /Bi ₂ WO ₆	300 W Xe-lamp	Gas-solid, CO ₂ /H ₂ O vapor	1.78 (CH ₄)/ 0.44 (CH ₃ OH) μmol g ⁻¹ h ⁻¹	80.2% [1]
20BWO/IVO	300 W Xe-lamp ($\lambda > 420 \text{ nm}$)	Liquid-solid water (5 mL H ₂ O)	1.13 (CH ₄)/ 17.97 (CO) μmol g ⁻¹ h ⁻¹	3.7% [2]
Bi ₂ WO ₆ -TiO ₂	300 W Xe-lamp (320 nm < λ < 780 nm)	Liquid-solid water (5 mL H ₂ O)	5.3 (CH ₄)/~6.3 (CO) μmol g ⁻¹ h ⁻¹	45.6 % [3]
Bi ₂ WO ₆ -OV/BiOI	500 W Xe-lamp (λ > 400 nm)	Gas-solid, CO ₂ /H ₂ O vapor	2.29 (CH ₄) / 40.02 (CO) μmol g ⁻¹ h ⁻¹	5.4 % [4]
2D/2D CsPbBr ₃ /Bi ₂ WO ₆	150 W Xe lamp (AM 1.5G filter \ 150 mW cm ⁻²)	Liquid-solid 8 ml EA, 2 ml IPA	14.33 (CH ₄) / 9.38 (CO)/1.82(H ₂) μmol g ⁻¹ h ⁻¹	56.1% [5]
Ultrathin ZnPc/BiVO ₄ nanosheet	300 W Xe lamp (420 nm cut-off filter)	CO ₂ /H ₂ O vapor	0.15 (CH ₄) / 0.97 (CO) μ mol g ⁻¹ h ⁻¹	13.4% [6]
Bi ₂ MoO ₆ -OVs	300 W Xe lamp (λ > 420 nm)	Gas-solid, CO ₂ /H ₂ O vapor	2.10 (CH ₄) / 0.27 (CO) μmol g ⁻¹ h ⁻¹	88.6% [7]
Bi ₂ WO ₆ nanosheets	300 W Xe lamp (AM 1.5G filter)	CO ₂ /H ₂ O vapor	0.63 (CH ₄) / 7.12 (CO)/4.6 (O ₂) μmol g ⁻¹ h ⁻¹	5.1% [8]
TiO2@PDA	350 W Xe lamp (AM 1.5G filter)	Liquid-solid, water (2 ml H ₂ O)	1.5 (CH ₄)/0.26 (CH ₃ OH) μmol g ⁻¹ h ⁻¹	85% [9]
Au-TiO ₂ (O)	300 W Xe lamp (420 nm < λ < 780)	Liquid-solid, water (CO ₂ /H ₂ O solution)	0.2 (CH ₄) / 1.2 (CO) μmol g ⁻¹ h ⁻¹	14.3 % [10]
This work	300 W Xe lamp (420 nm < λ < 780)	Gas-solid, CO ₂ /H ₂ O vapor	19.2 (CH ₄)/6.6 (CO) μmol g ⁻¹ h ⁻¹	75%

Table S1 Photocatalytic CO_2 reduction performance of 15%-BWO-NDs/TO-NSs compared to other up-to-date catalysts.

References

- S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D Heterojunction of Ultrathin MXene/Bi₂WO₆ Nanosheets for Improved Photocatalytic CO₂ Reduction, Adv. Funct. Mater. 2018, 28, 1800136.
- 2. J. Li, F. Wei, Z. Xiu and X. Han, Chem. Eng. J., 2022, 446, 137129.
- L. Yuan, K. Q. Lu, F. Zhang, X. Fu and Y. J. Xu, *Appl. Catal. B-Environ.*, 2018, 237, 424-431.
- X. Y. Kong, W. Q. Lee, A. R. Mohamed and S. P. Chai, *Chem. Eng. J.*, 2019, **372**, 1183-1193.
- Y. Jiang, H. Y. Chen, J. Y. Li, J. F. Liao, H. H. Zhang, X. D. Wang and D. B. Kuang, *Adv. Funct. Mater.*, 2020, **30**, 2004293.
- J. Bian, J. Feng, Z. Zhang, Z. Li, Y. Zhang, Y. Liu, S. Ali, Y. Qu, L. Bai, J. Xie, D. Tang, X. Li, F. Bai, J. Tang and L. Jing, *Angew. Chem. Int. Ed.*, 2019, **131**, 10989-10994.
- X. Yang, S. Wang, N. Yang, W. Zhou, P. Wang, K. Jiang, S. Li, H. Song, X. Ding, H. Chen and J. Ye, *Appl. Catal. B-Environ.*, 2019, 259 118088.
- Y. Liu, D. Shen, Q. Zhang, Y. Lin and F. Peng, *Appl. Catal. B-Environ.*, 2021, 283, 119630.
- A. Meng, B. Cheng, H. Tan, J. Fan, C. Su and J. Yu, *Appl. Catal. B-Environ.*, 2021, 289, 120039.
- A. Wang, S. Wu, J. Dong, R. Wang, J. Wang, J. Zhang, S. Zhong and S. Bai, *Chem. Eng. J.*, 2021, **404**, 127145.