Supporting Information

Role of the electrode-edge in optically sensitive three-dimensional carbon foam-MoS₂ based high-performance microsupercapacitors

Sumana Kumar^a, Anwesha Mukherjee^a, Swanand Telpande^b, Ayon Das Mahapatra^a, Praveen Kumar^b, Abha Misra^{*a}

^aDepartment of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India. E-mail: abha@iisc.ac.in

^bDepartment of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India

*Corresponding author, Email: abha.misra1@gmail.com

Calculations

The gravimetric capacitances $(C_S, F/g)$ were calculated from the CV curve at different scan rates by the equation,¹

$$C_{S} = \frac{\int I dV}{mv\Delta V} \tag{1}$$

Where, $\int IdV$ denotes the area under the CV curve, *m* is the mass of active material of the working electrode (g), *v* is the scan rate (*V*/*s*), and ΔV is the operating potential range (*V*).

The gravimetric capacitance $(C_{S'}, F/g)$ was evaluated from the CD curve using the following equation,²

$$C_{S} = \frac{I\Delta t}{m\Delta V} \tag{2}$$

Where, I is the discharge current (A) and Δt is the discharge time (s) after the voltage (IR) drop.

The areal specific capacitances $(C_A, F/cm^2)$ were calculated from the CV curves using the following equation,²

$$C_A = \frac{\int I dV}{A \nu \Delta V} \tag{3}$$

Where, A is the entire device area including electrodes and the gap between the electrodes (cm²).

The volumetric capacitances $(C_V, F/cm^3)$ were calculated from the CV curves using the equation,

$$C_V = \frac{C_A}{d} \tag{4}$$

Where, d is the thickness of coated material on electrodes (cm).

The energy $(E_A, Wh/cm^2)$ and power density $(P_A, W/cm^2)$ of the devices were evaluated by the following equations, respectively.²

$$E_A = \frac{1}{2} \times C_A \times \frac{\left(\Delta V\right)^2}{3600} \tag{5}$$

$$P_A = \frac{E_A}{\Delta t} \times 3600 \tag{6}$$

Where, Δt is the discharge time (s).

Figure S1: EDX spectrum of CF-MoS₂ composite.

Figure S2: XRD pattern of CF.

Figure S3. Raman spectra of (a) CF and (b) CF-MoS₂.

Figure S4: XPS survey spectra of CF-MoS₂ hybrid.

Figure S5: Gravimetric capacitance as a function of scan rates for CF-MoS₂ hybrid and CF.

Figure S6: Cross-sectional SEM image of (a) $CF-MoS_2$ composite and, (b) CF coated working electrodes.

Figure S7: Comparison of volumetric capacitance of CF and CF-MOS $_2$ at a scan rate of 5 mV/s.

Figure S8: CD curves of (a) CF and (b) CF-MoS₂ electrode at various current densities.

Table S1: Gravimetric capacitance comparison of $CF-MoS_2$ with reported nanostructured MoS_2 and MoS_2 -based composites.

MoS ₂ material	Method of	Electrochemical	Reference
	preparation	properties	
MoS ₂ /rGO	Microwaves	148 F/g at 10 mV/s	3
MoS ₂ nanosheets	Hydrothermal	129.2 F/g at 1A/g	4
MoS_2 nanostructure	Hydrothermal	106 F/g at 5mV/s	5
MoS ₂ microspheres	Biopolymer- assisted Hydrothermal	185 F/g at 1 A/g	6
C/MoS ₂ nanocomposites	Hydrothermal	210 F/g at 1 A/g	7
MoS ₂ /RCF composite	Hydrothermal	214.8 at 1 A/g	8
MoS ₂ /C composite	Hydrothermal	201.4 F/g@ 0.2 A/g	9
MoS ₂ -titanium plate	Hydrothermal	133 F/g@ 1A/g	10
Yolk-shell MoS ₂ microsphere	Hydrothermal	161.4 F/g at 1 A/g	11
CF-MoS ₂	Hydrothermal	270 F/g at 5 mV/s 226 F/g at 1.6 A/g	This work

Figure S9: CV curves of CF-MoS₂ material coated zig-zag electrode based microsupercapacitors at high scan rates ranging from 5 to 50 V/s.

Figure S10: Areal specific capacitance calculated from CV curves at different scan rates ranging from 5 to 100 mV/s.

Figure S11: Cross-sectional SEM image of (c) CF-MoS₂ composite coated zig-zag electrodes,

(d) CF-MoS $_2$ composite coated interdigitated electrodes.

Figure S12: Volumetric capacitance calculated from CV curves at different scan rates ranging from 5 to 100 mV/s.

Figure S13: (a) CV responses and (b) comparison of areal specific capacitance with zig-zag edge and planar edge electrodes using CF as electrode material at a scan rate of 5 mV/s.

Figure S14: Schematics of different type of Fractal electrode geometry ((a)-(c): adapted from previous reference¹² and (d)-(f): adapted from previous reference¹³).

Figure S15: Charge-discharge curves of zig-zag edge electrode based micro-supercapacitors at different applied current densities.

Figure S16: Charge-discharge curves of planar edge electrode based micro-supercapacitors at different applied current densities.

Figure S17: (a) The voltage drop (IR drop) associated with zig-zag micro-supercapacitor versus different current densities. (b) The voltage drop (IR drop) is associated with planar edge micro-supercapacitor versus different current densities.

Figure S18: Bode plot of zig-zag edge and planar edge micro-supercapacitors.

Figure S19: Ragone plot of the zig-zag edge and planar edge micro-supercapacitors calculated from CV curve, considering total area of the device and area of the electrodes (excluding gap between the fingers) at a scan rate of 5 mV/s.

Table S2: Capacitance retention comparison of zig-zag edge micro-supercapacitor with reported micro-supercapacitors.

Micro-supercapacitor structure	Electrolyte	Retention	Reference
MoS ₂ film	aqueous electrolytes	92%(1000)	14
MoS ₂ /RGO	1 M HClO ₄	92% (1000)	3
MoS ₂ /polypyrrole(PPy)	1 M KCl	85% (4000)	15
3D PEDOT:PSS/graphene	PVA/H ₂ SO ₄	88.6%(5000)	16
GP/PANI-G/GP	PVA/H ₂ SO ₄	80.9%(5000)	17
PEDOT	PVA/LiCl	96.6%(5000)	18
MoS ₂ -rGO hybrid	PVA/H ₂ SO ₄	88.6% (5000)	19
Inkjet printed MoS ₂	PVA/ H ₂ SO ₄	85.6%10000)	20
MXene/graphene aerogels	6 M KOH	90% (10000)	21
MXene	PVA/Na ₂ SO ₄	91.4%(10000)	22
MnO _x /Au	1 M Li ₂ SO ₄	74.1%(15000)	23
MoS ₂ /nanoporous graphene film	PVA/H ₃ PO ₄	82.2%(20000)	24
CF-MoS ₂	PVA/H ₂ SO ₄	96.2%(5000)	This work

Table S3: A comparison of the perimeter to surface area ratio for different electrode designs.

Electrode geometry	Change in perimeter-to- surface area ratio compared to IDE (%)	Reference
Fractal Moore	30.46	12
Fractal Peano	26	12
Fractal Hilbert	39.5	12
Zig-Zag edge	50	This work

Figure S20: (a) CV curves in dark and under illumination using wavelengths of 600 nm, 525 nm, and 475 nm at a scan rate of 5 mV/s. (b) Areal capacitance comparison in dark and under illumination (600 nm, 525 nm, and 475 nm) obtained from CV. (c) Capacitance enhancement under illumination using 600 nm, 525 nm, and 475 nm in comparison with the dark condition.

Figure S21: Schematic of CF-MOS₂/FTO device in photo-recharged condition.

References

- Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, *Adv. Funct. Mater.*, 2011, 21, 2366–2375.
- J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng and M.
 Östling, ACS Nano, 2017, 11, 8249–8256.
- E. G. Da Silveira Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N. Pinheiro, E. C.
 Pereira, W. H. Schreiner and E. R. Leite, *Adv. Energy Mater.*, 2014, 4, 1–8.
- K. J. Huang, J. Z. Zhang, G. W. Shi and Y. M. Liu, *Electrochim. Acta*, 2014, **132**, 397–403.
- K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, *Mater. Res. Bull.*, 2014, 50, 499–502.
- 6 L. Ma, L. M. Xu, X. P. Zhou and X. Y. Xu, *Mater. Lett.*, 2014, **132**, 291–294.
- B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, *Electrochim. Acta*, 2013, **100**, 24–28.
- 8 C. Zhao, Y. Zhou, Z. Ge, C. Zhao and X. Qian, *Carbon*, 2018, **127**, 699–706.
- 9 L. Q. Fan, G. J. Liu, C. Y. Zhang, J. H. Wu and Y. L. Wei, *Int. J. Hydrogen Energy*, 2015, 40, 10150–10157.
- 10 L. Wang, Y. Ma, M. Yang and Y. Qi, *Appl. Surf. Sci.*, 2017, **396**, 1466–1471.
- P. Wang, C. Zhou, B. Zheng, H. Liu, S. Sun and D. Guo, *Mater. Lett.*, 2018, 233, 286–289.
- M. K. Hota, Q. Jiang, Y. Mashraei, K. N. Salama and H. N. Alshareef, *Adv. Electron. Mater.*, 2017, 1700185.

- 13 K. H. Huang, C. Te Lin, Y. T. Chen and Y. J. J. Yang, J. Appl. Phys., 2019, 125, 014902.
- L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R.
 Vajtai and P. M. Ajayan, *Small*, 2013, 9, 2905–2910.
- H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang and Z. Tang, *Adv. Mater.*, 2015, 27, 1117–1123.
- 16 W. Yan, J. Li, G. Zhang, L. Wang and D. Ho, J. Mater. Chem. A, 2020, 8, 554–564.
- 17 X. Shi, Z. S. Wu, J. Qin, S. Zheng, S. Wang, F. Zhou, C. Sun and X. Bao, *Adv. Mater.*, 2017, 29, 1–9.
- J. Wang, V. K. Bandari, D. Karnaushenko, Y. Li, F. Li, P. Zhang, S. Baunack, D. D.
 Karnaushenko, C. Becker, M. Faghih, T. Kang, S. Duan, M. Zhu, X. Zhuang, F. Zhu,
 X. Feng and O. G. Schmidt, ACS Nano, 2019, 13, 8067–8075.
- 19 C. Yu, H. Xu, Y. Sun, X. Zhao, Z. Hui, Y. Gong, R. Chen, Q. Chen, J. Zhou, G. Sun and W. Huang, *Carbon*, 2020, **170**, 543–549.
- 20 B. Li, X. Liang, G. Li, F. Shao, T. Xia, S. Xu, N. Hu, Y. Su, Z. Yang and Y. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 39444–39454.
- X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He, P. Xie, D. Zhang and T. Fan, ACS Nano,
 2018, 12, 3502–3511.
- Y. Xie, H. Zhang, H. Huang, Z. Wang, Z. Xu, H. Zhao, Y. Wang, N. Chen and W. Yang, *Nano Energy*, 2020, 74, 104928.
- W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O. G. Schmidt, *Energy Environ. Sci.*, 2013, 6, 3218–3223.
- S. W. Kim, J. Hwang, S. J. Ha, J. E. Lee, J. C. Yoon and J. H. Jang, *J. Mater. Chem. A*, 2021, 9, 928–936.