Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information (SI)

Unveiling different physicochemical properties of M-doped β-NaFeO₂ (where M = Ni or Cu) materials evaluated as CO₂ sorbents: A combined experimental and theoretical analysis

Nayeli Gómez-Garduño^a, Daniel G. Araiza^{a,b,*}, Christian A. Celaya^{c,d,*}, Jesús Muñiz^c, Heriberto Pfeiffer^a

^aInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México,

Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Ciudad de México,

Mexico

^bPresent address: Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico

^cInstituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, C.P. 62580, Morelos, Mexico

^d Present address: Centro de Nanociencias y Nanotecnología, Universidad Nacional

Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C., C.P. 22800,

Mexico.

*Corresponding author: araiza@materiales.unam.mx (D.G. Araiza) and acelaya@ier.unam.mx (C.A. Celaya)

S.1 Characterization of materials

Fig. S1. Amplification of the XRD patterns, showing the most intense peaks coming from the β -

NaFeO₂ phase for each sample series: (a) XNi-NaFeO₂ and (b) XCu-NaFeO₂.

Fig. S2. XPS survey spectra of: (a) 2.5Ni-NaFeO₂, (b) 5Ni-NaFeO₂, (c) 2.5Cu-NaFeO₂ and (b) 5Cu-

NaFeO₂ samples.

Fig. S3. High resolution XPS spectra of the O 1s edge: (a) 2.5Ni-NaFeO₂, (b) 5Ni-NaFeO₂, (c) 2.5Cu-NaFeO₂ and (d) 5Cu-NaFeO₂ samples.

Fig. S4. Representative secondary electron images of selected *X*M-NaFeO₂ doped ferrites: (a) Pristine β -NaFeO₂, (b) 5Ni-NaFeO₂, (c) 5Cu-NaFeO₂, (d) 2.5Ni-NaFeO₂ and (e) 2.5Cu-NaFeO₂.

Fig. S5. CO₂-TPD desorption profiles for the pristine β -NaFeO₂ and 2.5Ni-NaFeO₂ samples thermally treated from 200 to 800 °C in a N₂ flow.

S.2 DFT calculations

Table S1. Cell parameter values (Å) of the fully relaxed orthorhombic β -NaFeO₂ structure. The

Axis	Cell parameter values (Å)					
	Calculated – DFT+U	Experimental – Rietveld	Reference [75]			
а	5.779	5.668	5.682			
b	5.419	5.384	5.425			
С	7.155	7.146	7.235			

lattice parameters are labeled as **a**, **b**, and **c**.

Fig. S6. Relaxed atomic geometries for: (a) pristine β-NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures. Colour code: Na (Green), O (Red), Fe (Purple), Ni (Yellow), and Cu (Bronze). The site of oxygen vacancy is denoted by the blue dotted circle. The text and black arrows indicate the Bader charge population computed by DFT+U method.

Fig. S7. 2D slice of the electronic localization function (ELF) for: (a) pristine β-NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures. Colour code: Na (Green), O (Red), Fe (Purple), Ni (Yellow), and Cu (Bronze). The oxygen vacancy site is denoted by the blue dotted circle.

Dond type	Bond length (Å)					
bonu type	β-NaFeO ₂	Ni-NaFeO ₂	Cu-NaFeO ₂	Ni-NaFeO ₂ -Vö	Cu-NaFeO ₂ -Vö	
Na–O	2.473	2.437	2.470	2.428	2.297	
Fe–O	1.840	1.836	1.838	1.838	1.814	
Na–Fe	3.283	3.494	3.285	3.294	3.512	
M–O ^a	n/a	1.929	2.001	1.865	1.922	

Table S2. Geometrical parameters (Å) of the fully relaxed pristine and M-doped ferrites. Values

were calculated at the spin-polarized GGA-PBE level of theory.

^aM is associated with Ni or Cu

Table S3. Theoretical (Theo.) and experimental (Exp.) band gap energy (E_{gap}) values, band gap difference (ΔE_{gap}), relative error (E_{error}), and magnetization moment (μ_B) of the pristine and M-doped ferrites, calculated at the spin-polarized GGA-PBE level of theory.

System	E _{gap} (eV)		ΔE_{gap}	E _{error}	Magnetization
	Theo.	Exp.	(ev)	(%)	moment (µ _B)
β-NaFeO ₂	1.87	1.80	0.07	3.88	n/a
Cu-NaFeO ₂	1.90	1.76-1.78	0.13	7.34	-0.57
Ni-NaFeO ₂	1.97	1.82-1.81	0.16	8.83	-0.13
Cu-NaFeO ₂ -Vö	1.76	1.76-1.78	0.01	0.56	-0.48
Ni-NaFeO ₂ -Vö	1.85	1.82-1.81	0.04	2.20	-1.53

Fig. S8. Mean square displacements (MSD), and diffusion coefficient of Na in sodium ferrite systems at (a-b) a temperature of T = 200 °C, and (c-d) T= 800 °C. The Na diffusion coefficient was

 $D_{Na} = \frac{1}{6t} \left[\sum_{i} \left| \Delta r_i(t) \right|^2 \right]$ obtained according to (a) ₂ 0.0001 Diffusion Coefficient (cm^2/s) β-NaFeO₂ Cu-NaFeO₂ β-NaFeO₂ Cu-NaFeO₂ Cu-NaFeO₂-Vö Ni-NaFeO₂-Vö Ni-NaFeO₂-Vö Cu-NaFeO₂-Vö Ni-NaFeO₂-Vö Ni-NaFeO₂-Vö 8x10⁻⁵ MSD (Å²) 1.5 6x10⁻⁵ 4x10⁻⁵ 0.5 2x10⁻⁵ 0 0 1000 3000 5000 0 2000 4000 1000 2000 3000 5000 0 4000 Time (fs) Time (fs)

Fig. S9. (a) Mean square displacements (MSD), and (b) Na diffusion coefficient in the sodium

ferrite systems at T = 700 °C.

Fig. S10. Radial distribution functions (RDF) at a temperature of T = 200 °C obtained with the AIMD simulations: (a) pristine β -NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures.

Fig. S11. Radial distribution functions (RDF) at a temperature of T = 800 °C obtained with the AIMD simulations: (a) pristine β -NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures.

Fig. S12. Radial distribution functions (RDF) for oxygen interaction at a temperature of T = 200 °Cobtained with the AIMD simulations: (a) pristine β -NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures.

Fig. S13. Radial distribution functions (RDF) for oxygen interaction at a temperature of T = 800 °Cobtained with the AIMD simulations: (a) pristine β -NaFeO₂, (b) Ni-NaFeO₂, (c) Cu-NaFeO₂, (d) Ni-NaFeO₂-Vö, and (e) Cu-NaFeO₂-Vö structures.