Electronic Supporting Information for

Construction of Co@N-CNTs grown on N-MoxC nanosheets for separator modification to

enhance adsorption and catalytic conversion of polysulfides in Li-S batteries

Guoqiang Zhao, Sen Liu, Xu Zhang, Yamin Zhang, Huan Shi, Yang Liu*, Linrui Hou*,

Changzhou Yuan*

School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R.

China

E-mail: mse_liuy@ujn.edu.cn (Prof. Y. Liu)

mse_houlr@ujn.edu.cn (Prof. L. Hou)

ayuancz@163.com; mse_yuancz@ujn.edu.cn (Prof. C. Yuan)

Fig. S1 (a) Tyndall effect in dispersive solution of few-layered MXene, (b) The cobalt ions closely attached to the negatively charged few-layered MXene nanosheets by electrostatic force.

Fig. S2 XRD patterns of Mo₂Ga₂C MAX.

Fig. S3 Raman spectrum and corresponding fitted profiles of Co@N-CNTs/N-Mo_xC.

Fig. S4 (a) XPS survey spectrum of Co@N-CNTs/N-Mo_xC, and (b)Mo 3d spectra of

MX Mo₂C.

Fig. S5 SEM images of (a) N-Mo $_x$ C, (b) Co@N-CNTs and (c) MX Mo $_2$ C.

Fig. S6 N2 adsorption-desorption curves of Co@N-CNTs/N-MoxC, Co@N-CNTs, N-

Mo_xC and MX Mo₂C as indicated.

Fig. S7 Pore size distribution of (a) Co@N-CNTs, (b) N-Mo_xC, (c) Co@N-CNTs/N-Mo_xC and (d) MX Mo₂C.

Fig. S8 SEM images of (a) PP separator and (b) coating surface for Co@N-CNTs/N-Mo_xC. (c) Digital photographs for the amount of electrolyte required to moisten the modified separator.

Gradient analysis (2, 4, 6, 8, 10, 12, 14, and 16 μ L) was carried out to explore the amount of electrolyte necessary for the moisten the modified separator. With the increase in the amount of electrolyte, the wetting area of the modified separator expands. When the amount of electrolyte reached 12 μ L, only two points of the modified separator were not completely wetted. When the electrolyte dosage reached 14 and 16 μ L, it was fully wetted. For a more accurate reaction, the wetting condition was verified when the electrolyte dosage was 13 μ L. The results showed that the necessary electrolyte dosage to wet modified separator was 13 μ L. However, to achieve a good Li-sulfur battery performance test, we used the electrolyte dosage of 20 μ L mg⁻¹ (the amount of electrolyte used per milligram of sulfur) for relevant characterization.

Fig. S9 TG diagram of KB/S for checking the sulfur loading.

Fig. S10 Equivalent circuit diagram for EIS fitting.

Fig. S11 Li_2S nucleation test of MX Mo_2C electrode.

Fig. S12 The charge-discharge platform voltage gaps of cells with different separators

under different current densities.

Fig. S13 Charge-discharge curve under a different current density of (a) Co@N-CNTs/N-Mo_xC, (b) N-Mo_xC and (c) Co@N-CNTs separators.

Fig. S14 Charge-discharge curve of Co@N-CNTs/N-Mo_xC separator under different

cycles as indicated at 1 C.

Fig. S15 Digital photos of lithium anodes after different times of charge and discharge cycles.

Fig. S16 Cycling stability of the cells with Co@N-CNTs/N-Mo_xC separator under high sulfur loading: 4.4 mg cm⁻² at 0.1 C, 3.5 mg cm⁻² at 0.2 C.

Fig. S17 SEM images of various modified layers after 10 cycles under different voltages as indicated.

To further clarify the role of Co@N-CNTs/N-Mo_xC in the aggregation of polysulfide and inhibition of sulfur aggregation, the cells were disassembled after 10 charge-discharge cycles at 1 C. SEM images of different modified layers at different voltages (1.7, 2.3, 2.8 V) are shown in **Fig. S17**. Taking Co@N-CNTs/N-Mo_xC as an example, at 2.8 V, S8 (solid) deposited on the surface of Co@N-CNTs/N-Mo_xC layer and encapsulated it. Upon discharge to 2.3 V, S8 is transformed into Li₂S_n (soluble, n = 4 or 6) and Co@N-CNTs/N-Mo_xC exposes its 3D structure. When discharged to 1.7 V, Li₂S_n are further transformed into Li₂S₂/Li₂S (solid) and deposited on the Co@N-CNTs/N-Mo_xC layer.

Name	Atomic (%)	
Mo 3d	0.1	
C 1s	95.7	
N 1s	2.4	
O 1s	1.5	
Co 2P	0.3	

Table S1 Atomic information of Co@N-CNTs/N-Mo $_{x}C$

Sample	Specific surface area $(m^2 g^{-1})$
Co@N-CNTs/N-Mo _x C	28
Co@N-CNTs	89
N-Mo _x C	13
MX Mo ₂ C	5

Table S2 Specific surface area obtained in the BET test

Modified separators	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
Co@N-CNTs/N-Mo _x C	1.08	49.31
Co@N-CNTs	1.13	64.02
N-Mo _x C	1.35	74.19
MX Mo ₂ C	2.14	86.95
РР	2.21	104.80

Table S3 The information obtained by fitting the electrochemical impedance